European Food Research and Technology

, Volume 242, Issue 1, pp 11–23 | Cite as

Variation of sunstruck flavor-related substances in malted barley, triticale and spelt

  • Alicia Munoz-InsaEmail author
  • Martina Gastl
  • Thomas Becker
Original Paper


Sunstruck flavor is an off-flavor formed when beer is exposed to light. Although isohumulone is known as the main substrate, the degradation of substances present in malt also plays a role in its formation. Riboflavin, phenylalanine, sulfur-containing amino acids and the sulfur-containing peptide glutathione have been described as sunstruck flavor initiators, promoting the formation of sunstruck flavor (Charpentier and Maujean in Flavour ´81, 3rd Weurman symposium, Munich, 1981; Huvaere et al. in J Agric Food Chem 53(5):1489–1494, 2005; Kuroiwa and Hashimoto in Am Soc Brew Chem 19:28–36, 1961). Moreover, tryptophan and polyphenols are known to reduce the formation of sunstruck character in beer (inhibitors) (Pozdrik et al. in J Agric Food Chem 54(17):6123–6129, 2006). The initiators and inhibitors of sunstruck flavor originate in the raw material used, and their content can be influenced during manufacturing. The aim of this paper was to define the influence of the malting process parameters on the content of initiators and inhibitors involved in the formation of sunstruck flavor in different cereals. Barley, spelt and triticale were malted under different parameters, and the content of the sunstruck flavor initiators and inhibitors was analyzed. The initiator and inhibitor contents were described by linear, two-factor interaction or quadratic models. The malting parameters exert in most of the substances a positive influence. The germination temperature had a negative influence on the content of cysteine, methionine and tryptophan of triticale. The germination time and temperature showed a negative influence on the tryptophan content of spelt. With the knowledge gained, the potential of different cereals for its use in the development of malted cereal-based beverages can be determined. Moreover, the influence of malting process on the content of these substances as well as differences between the raw materials was defined.


Sunstruck flavor Barley Triticale Spelt Malting process 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.


  1. 1.
    Charpentier N, Maujean A (1981) Sunlight flavours in champagne wines. In: Schreier P (ed) Flavour ´81, 3rd Weurman symposium, MunichGoogle Scholar
  2. 2.
    Huvaere K, Andersen ML, Skibsted LH, Heyerick A, De Keukeleire D (2005) Photooxidative degradation of beer bittering principles: a key step on the route to lightstruck flavor formation in beer. J Agric Food Chem 53(5):1489–1494CrossRefGoogle Scholar
  3. 3.
    Kuroiwa Y, Hashimoto N (1961) Composition of Sunstruck flavor substance and mechanism of its evolution. Am Soc Brew Chem 19:28–36Google Scholar
  4. 4.
    Pozdrik R, Roddick FA, Rogers PJ, Nguyen T (2006) Spectrophotometric method for exploring 3-methyl-2-butene-1-thiol (MBT) formation in lager. J Agric Food Chem 54(17):6123–6129CrossRefGoogle Scholar
  5. 5.
    Lintner C (1875) Die Bierbrauerei. Friedrich vieweg und sohn verlag, BraunschweigGoogle Scholar
  6. 6.
    Kuroiwa Y, Hashimoto N, Kokubo E, Nakagawa K (1963) Factors essential for the evolution of sunstruck flavor. J Am Soc Brew Chem 21:181–193Google Scholar
  7. 7.
    Gunst F, Verzele M (1978) On the sunstruck flavor of beer. J Inst Brew 84:291–292CrossRefGoogle Scholar
  8. 8.
    Komarek D, Hartmann K, Schieberle P, (2002) Changes in key odorants in beer during exposure to light. In: The 10th Weurman flavour research symposium, Beaune2002Google Scholar
  9. 9.
    Becker T, Schieberle P (2011) Optimierung von Rezeptur und Herstellungsverfahren zur Vermeidung qualitätsmindernder Aromastoffe in hopfenhaltigen Getränken. Abschlussbericht. Forschungskreis der Ernährungsindustrie e.V, BonnGoogle Scholar
  10. 10.
    Huvaere K, Sinnaeve B, Van Bocxlaer J, De Keukeleire D (2004) Photooxidative degradation of beer bittering principles: product analysis with respect to lightstruck flavour formation. Photochem Photobiol Sci 3:854–858CrossRefGoogle Scholar
  11. 11.
    Maye JP, Mulqueen S, Weis S, Xu J, Preist M (1999) Preparation of isomerized a-acid standards for HPLC analysis of iso-a-acids, roh-iso-a-acids, tetrahydro-iso-a-acids and hexahydro-iso-a-acids. Am Soc Brew Chem J 57(2):55–59Google Scholar
  12. 12.
    De Keukeleire D, Heyerick A, Huvaere K, Skibsted LH, Andersen ML (2008) Beer lightstruck flavor: the full story. Cerevisia (Bilingual Edition) 33(3):133–144Google Scholar
  13. 13.
    Sakuma S, Rikimaru Y, Kobayashi K, Kokawa M (1991) Sunstruck flavor formation in beer. J Am Soc Brew Chem 49:162–165Google Scholar
  14. 14.
    Huvaere K, Andersen ML, Storme M, Van Bocxlaer J, Skibsted LH, De Keukeleire D (2006) Flavin-induced photodecomposition of sulfur-containing amino acids is decisive in the formation of beer lightstruck flavor. Photochem Photobiol Sci 5(10):961–969CrossRefGoogle Scholar
  15. 15.
    Irwin AJ, Bordeleau L, Barker RL (1993) Model studies and flavor threshold determination of 3-methyl-2-butene-1-thiol in beer. J Am Soc Brew Chem 51:1–3Google Scholar
  16. 16.
    Templar J, Arrigan K, Simpson WJ (1995) Formation, measurement and significance of lightstruck flavor in beer a review. Brew Digest 70:18–25Google Scholar
  17. 17.
    Patton S (1954) The mechanism of sunlight flavor formation in milk with special reference to methionine and riboflavin. J Dairy Sci 37:446–452CrossRefGoogle Scholar
  18. 18.
    Goldsmith MR, Rogers PJ, Cabral NM, Ghiggino KP, Roddick FA (2005) Riboflavin triplet quenchers inhibit lightstruck flavor formation in beer. J Am Soc Brew Chem 63(4):177–184Google Scholar
  19. 19.
    Komarek D, Hartmann K, Schieberle P (2004) The role of 3-methyl-2-butene-1-thiol in beer flavor. In: Deibler DK, Delwiche J (eds) Handbook of flavor characterization. Sensory analysis, chemistry, and physiology, vol 1, 2, 3, 2nd edn. Marcel Dekker Inc, New York, Basel, pp 473–481Google Scholar
  20. 20.
    Blockmans C, Meersche J, Masschelein CA, Devreux A (1981) Photodegradation and formation of carbonyl-and sulphur compounds in beer. In: European Brewery Convention, Proceedings of 18th Congress, Copenhagen, pp 347–357Google Scholar
  21. 21.
    Becker EM, Cardoso DR, Skibsted LH (2005) Deactivation of riboflavin triplet-excited state by phenolic antioxidants: mechanism behind protective effects in photooxidation of milk-based beverages. Eur Food Res Technol 221(3):382–386CrossRefGoogle Scholar
  22. 22.
    Cardoso DR, Olsen K, Møller JK, Skibsted LH (2006) Phenol and terpene quenching of singlet-and triplet-excited states of riboflavin in relation to light-struck flavor formation in beer. J Agric Food Chem 54(15):5630–5636CrossRefGoogle Scholar
  23. 23.
    Haggi E, Bertolotti S, Garcı́a NA (2004) Modelling the environmental degradation of water contaminants. Kinetics and mechanism of the riboflavin-sensitised-photooxidation of phenolic compounds. Chemosphere 55(11):1501–1507CrossRefGoogle Scholar
  24. 24.
    Kaukovirta-Norja A, Wilhelmson A, Poutanen K (2004) Germination: a means to improve the functionality of oat. Agric Food Sci 13:100–112CrossRefGoogle Scholar
  25. 25.
    Klose C (2010) Oats proteins and their changes during malting and brewing in comparison to barley proteins. University College Cork, CorkGoogle Scholar
  26. 26.
    Briggs DE (1998) Malts and malting. Blackle Academic and Professional, LondonGoogle Scholar
  27. 27.
    Klose C, Schehl BD, Arendt EK (2009) Fundamental study on protein changes taking place during malting of oats. J Cereal Sci 49(1):83–91CrossRefGoogle Scholar
  28. 28.
    Narziß L, Back W (2012) Die Bierbrauerei: band 1: Die Technologie Der Malzbereitung. VCHGoogle Scholar
  29. 29.
    Goupy P, Hugues M, Boivin P, Amiot MJ (1999) Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J Sci Food Agric 79(12):1625–1634CrossRefGoogle Scholar
  30. 30.
    Bellmer H (1976) Studie über die Polyphenole und deren Polymerisationsindex in den Rohstoffen des Bieres und ihre Veränderungen während der Bierbereitung. Technische Universität München, MunichGoogle Scholar
  31. 31.
    Gastl M, Mezger R, Back W (2007) The meaning of water soluble vitamins B1 and B2 in the brewing process measured by HPLC. In: Paper presented at the European Brewery Convention: Proceedings of the 31th Congress, VeniceGoogle Scholar
  32. 32.
    Aerts G, De Cooman L, De Rouck G, Goiris K (2007) Use of hop polyphenols in beer. Google PatentsGoogle Scholar
  33. 33.
    Norris LM, Mccord JD, Henis J, Hoehn MJ (2002) Method of altering and improving taste characteristics of edible consumables with monomeric or oligomeric polyphenolic compounds. US Patent 20,020,001,651Google Scholar
  34. 34.
    Gawel R (1998) Red wine astringency: a review. Aust J Grape Wine Res 4(2):74–95CrossRefGoogle Scholar
  35. 35.
    Heyerick A (2001) Unraveling the mechanism of the lightstruck flavor of beer. Ghent University, GhentGoogle Scholar
  36. 36.
    Anger H-M (2006) Brautechnische Analysenmethoden-Rohstoffe. Selbstverlag der Mitteleuropäische Brautechnische Analysenkommission, FreisingGoogle Scholar
  37. 37.
    Khuri AI, Cornell JA (1996) Response surfaces: designs and analyses, vol 152. CRC Press, Boca RatonGoogle Scholar
  38. 38.
    Joglekar A, May A (1987) Product excellence through design of experiments. In: Cereal foods world, vol 32, 12, pp 857Google Scholar
  39. 39.
    Krömer JO (2006) Systembiotechnologische Studien an Corynebacterium glutamicum zur Charakerisierung der Methioninsynthese. UniversitätsbibliothekGoogle Scholar
  40. 40.
    Alvarez-Jubete L, Wijngaard H, Arendt E, Gallagher E (2010) Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem 119(2):770–778CrossRefGoogle Scholar
  41. 41.
    Singleton V, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16(3):144–158Google Scholar
  42. 42.
    Zielinski H, Kozlowska H, Lewczuk B (2001) Bioactive compounds in the cereal grains before and after hydrothermal processing. Innov Food Sci Emerg Technol 2(3):159–169CrossRefGoogle Scholar
  43. 43.
    Piendl A (2000) Physiologische Bedeutung der Eigenschaften des Bieres. CarlGoogle Scholar
  44. 44.
    Krahl M, Hagel C, Zarnkow M, Back W, Kreisz S (2008) Changes of the content of water-soluble bioactive compounds during the malting process of spelt wheat (Triticum aestivum var. spelta). Brew Sci 10:169–173Google Scholar
  45. 45.
    Hassani A, Zarnkow M, Becker T (2013) Influence of malting conditions on sorghum (Sorghum bicolor (L.) Moench) as a raw material for fermented beverages. Food Sci Technol. doi: 10.1177/1082013213490710
  46. 46.
    Grela ER (1996) nutrient composition and content of antinutritional factors in spelt (Triticum spelta L.) Cultivars. J Sci Food Agric 71(3):399–404CrossRefGoogle Scholar
  47. 47.
    Belderok B (1968) Changes in thiol and disulphide contents in barley embryos during dormancy and after-ripening. J Inst Brew 74(4):333–340CrossRefGoogle Scholar
  48. 48.
    Pheifer JH, Briggs DE (1995) Thiols and disulphides in quiescent and germinating barley grains, both dormant and mature. J Inst Brew 101(2):85–93CrossRefGoogle Scholar
  49. 49.
    Kunze W (2007) Technologie Brauer and Mälzer. VLB Berlin, Berlin (In German) Google Scholar
  50. 50.
    Narziß L (1999) Die Technologie der Malzbereitung. Ferdinand Enke Verlag, Stuttgart, Germany, Die Bierbrauerei (In German) Google Scholar
  51. 51.
    Salama ARA, El-Sahn MA, Mesallam AS, Shehata AM (1997) The chemical composition, the nutritive value and the functional properties of malt sprout and its components (acrospires, rootlets and husks). J Sci Food Agric 75(1):50–56CrossRefGoogle Scholar
  52. 52.
    Saura-Calixto F, Serrano J, Pérez-Jiménez J (2011) What Contribution Is Beer to the Intake of Antioxidants in the Diet? Beer in Health and Disease Prevention:441Google Scholar
  53. 53.
    Isoe A, Kangawa K, Ono M, Nakantani K, Nishigaki M (1991) Evaluation of dehusked malt and its influence on the brewing process and beer quality. In: Proceedings of the European Brewing Convention Congress, Lisbon, Oxford, pp 37–42Google Scholar
  54. 54.
    Glatthar J, Heinisch JJ, Senn T (2003) The use of unmalted triticale in brewing and its effect on wort and beer quality. J Am Soc Brew Chem 61(4):182–190Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alicia Munoz-Insa
    • 1
    Email author
  • Martina Gastl
    • 1
  • Thomas Becker
    • 1
  1. 1.Lehrstuhl für Brau- und GetränketechnologieTechnische Universität München WeihenstephanFreisingGermany

Personalised recommendations