European Food Research and Technology

, Volume 241, Issue 3, pp 341–356 | Cite as

Bacteriocin production by lactic acid bacteria isolated from fish, seafood and fish products

  • Beatriz Gómez-Sala
  • Estefanía Muñoz-Atienza
  • Jorge Sánchez
  • Antonio Basanta
  • Carmen Herranz
  • Pablo E. Hernández
  • Luis M. Cintas
Original Paper

Abstract

Analysis of 1245 lactic acid bacteria (LAB) isolates obtained from fish, seafood and fish products showed that 197 exerted direct antimicrobial activity against 20 spoilage and food-borne pathogenic microorganisms. Further evaluation of 64 LAB isolates selected on the basis of their direct antimicrobial activity revealed 25 secreted bacteriocins. Biochemical characterization, PCR analysis and/or DNA sequencing of the superoxide dismutase gene (sodA) and/or 16S rRNA gene (16S rDNA), and/or SDS-PAGE analyses of the 64 selected isolates allowed the identification of 24 of them as Enterococcus faecium, 22 as Enterococcus faecalis, seven as Pediococcus pentosaceus, five as Weissella cibaria, three as Lactobacillus sakei subsp. carnosus, one as L. sakei subsp. sakei, one as Lactobacillus curvatus subsp. curvatus and one as Leuconostoc mesenteroides subsp. cremoris. PCR analyses for the detection of genes encoding previously described bacteriocins performed on the 25 bacteriocinogenic strains showed that 19 strains (18 enterococci and 1 lactobacilli) amplified, at least, one of the tested genes, and up to four and two target genes were simultaneously detected in a single enterococcal and lactobacilli strain, respectively. Moreover, in vitro safety evaluation of E. faecium strains was carried out by detection of potential virulence factors, analysis of hemolysin, gelatinase and protease production, and susceptibility testing to antibiotics of relevance for human and veterinary industry. The results reported herein demonstrate the suitability of fish, seafood and fish products for the isolation of LAB (mainly enterococci), including (multi)bacteriocinogenic strains, encoding bacteriocins active against Listeria monocytogenes and other food-borne pathogens of interest for the food industry.

Keywords

Lactic acid bacteria Antimicrobial activity Bacteriocins Fish Seafood Fish products 

Notes

Acknowledgments

This work was partially supported by projects AGL2009–08348-ALI from Ministerio de Ciencia y Tecnología (MCYT), Spain; AGL2012–34829 from Ministerio de Economía y Competitividad (MINECO); 02BTF03E from Xunta de Galicia, Spain; S–2009/AGR–1489 from Dirección General de Universidades e Investigación, Consejería de Educación, Comunidad de Madrid (CAM), Spain, and Spanish-Portuguese Integrated Action HP2008-0070 from Ministerio de Ciencia e Innovación (MICINN), Spain. B. Gómez-Sala holds a contract from the company Innaves S. A. (Vigo, Spain). E. Muñoz-Atienza is recipient of a predoctoral fellowship from the UCM, Spain. A. Basanta was recipient of an FPI fellowship from CAM, Spain. J. Sánchez held an FPU fellowship from Ministerio de Educación, Cultura y Deporte (MECD), Spain. The authors express their gratitude to Dr. Núñez, Departamento de Tecnología de los Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Agroalimentaria (INIA), Madrid (Spain), and Dr. Franz, Federal Research Centre for Nutrition and Food, Institute for Hygiene and Toxicology, Karlsruhe (Germany) for kindly supplying some of the bacterial strains used as PCR positive controls.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Boulares M, Mejri L, Hassouna M (2011) Study of the microbial ecology of wild and aquacultured Tunisian fresh fish. J Food Prot 74:1762–1768CrossRefGoogle Scholar
  2. 2.
    Pérez-Sánchez T, Balcázar JL, García Y, Halaihel N, Vendrell D, de Blas I, Merrifield DL, Ruiz-Zarzuela I (2011) Identification and characterization of lactic acid bacteria isolated from rainbow trout, Oncorhynchus mykiss (Walbaum), with inhibitory activity against Lactococcus garvieae. J Fish Dis 34:499–507CrossRefGoogle Scholar
  3. 3.
    Yamazaki K, Suzuki M, Kawai Y, Inoue N, Montville TJ (2003) Inhibition of Listeria monocytogenes in cold-smoked salmon by Carnobacterium piscicola CS526 isolated from frozen surimi. J Food Prot 66:1420–1425Google Scholar
  4. 4.
    Todorov SD, Rachman C, Fourrier A, Dicks LM, van Reenen CA, Prévost H, Dousset X (2011) Characterization of a bacteriocin produced by Lactobacillus sakei R1333 isolated from smoked salmon. Anaerobe 17:23–31CrossRefGoogle Scholar
  5. 5.
    Pinto AL, Fernandes M, Pinto C, Albano H, Castilho F, Teixeira P, Gibbs PA (2009) Characterization of anti-Listeria bacteriocins isolated from shellfish: potential antimicrobials to control non-fermented seafood. Int J Food Microbiol 129:50–58CrossRefGoogle Scholar
  6. 6.
    Lee HI, Kim MH, Kim KY, So JS (2010) Screening and selection of stress resistant Lactobacillus spp. isolated from the marine oyster (Crassostrea gigas). Anaerobe 16:522–526CrossRefGoogle Scholar
  7. 7.
    Itoi S, Abe T, Washio S, Ikuno E, Kanomata Y, Sugita H (2008) Isolation of halotolerant Lactococcus lactis subsp. lactis from intestinal tract of coastal fish. Int J Food Microbiol 121:116–121CrossRefGoogle Scholar
  8. 8.
    Seppola M, Olsen RE, Sandaker E, Kanapathippillai P, Holzapfel W, Ringø E (2006) Random amplification of polymorphic DNA (RAPD) typing of carnobacteria isolated from hindgut chamber and large intestine of Atlantic cod (Gadus morhua l.). Syst Appl Microbiol 29:131–137CrossRefGoogle Scholar
  9. 9.
    Migaw S, Ghrairi T, Belguesmia Y, Choiset Y, Berjeaud JM, Chobert JM, Hani K, Haertlé T (2013) Diversity of bacteriocinogenic lactic acid bacteria isolated from Mediterranean fish viscera. World J Microbiol Biotechnol. doi: 10.1007/s11274-013-1535-6 Google Scholar
  10. 10.
    Ringø E (2008) The ability of carnobacteria isolated from fish intestine to inhibit growth of fish pathogenic bacteria: a screening study. Aquac Res 39:171–180CrossRefGoogle Scholar
  11. 11.
    Todorov SD, Furtado DN, Saad SM, Tomé E, Franco BD (2011) Potential beneficial properties of bacteriocin-producing lactic acid bacteria isolated from smoked salmon. J Appl Microbiol 110:971–986CrossRefGoogle Scholar
  12. 12.
    Muñoz-Atienza E, Gómez-Sala B, Araújo C, Campanero C, del Campo R, Hernández PE, Herranz C, Cintas LM (2013) Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol 13:15CrossRefGoogle Scholar
  13. 13.
    Gram L, Dalgaard P (2002) Fish spoilage bacteria-problems and solutions. Curr Opin Biotechnol 13:262–266CrossRefGoogle Scholar
  14. 14.
    FAO/WHO (2004) Risk assessment of Listeria monocytogenes in ready-to-eat foods. FAO and WHO, RomeGoogle Scholar
  15. 15.
    Rocourt J, Jacquet C, Reilly A (2000) Epidemiology of human listeriosis and seafoods. Int J Food Microbiol 62:197–209CrossRefGoogle Scholar
  16. 16.
    Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–9CrossRefGoogle Scholar
  17. 17.
    El Bassi L, Hassouna M, Shinzato N, Matsui T (2009) Biopreservation of refrigerated and vacuum-packed Dicentrarchus labrax by lactic acid bacteria. J Food Sci 74:M335–M339CrossRefGoogle Scholar
  18. 18.
    Cintas LM, Rodríguez JM, Fernández MF, Sletten K, Nes IF, Hernández PE, Holo H (1995) Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl Environ Microbiol 61:2643–2648Google Scholar
  19. 19.
    Ke D, Picard FJ, Martineau F, Menard C, Roy PH, Coulette M, Bergeron MG (1999) Development of a PCR assay for rapid detection of enterococci. J Clin Microbiol 37:3497–3503Google Scholar
  20. 20.
    Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33:24–27. Erratum, 33:1434Google Scholar
  21. 21.
    Sánchez J, Basanta A, Gómez-Sala B, Herranz C, Cintas LM, Hernández PE (2007) Antimicrobial and safety aspects, and biotechnological potential of bacteriocinogenic enterococci isolated from Mallard ducks (Anas platyrhynchos). Int J Food Microbiol 117:295–305CrossRefGoogle Scholar
  22. 22.
    Poyart C, Quesnes G, Trieu-Cuot P (2000) Sequencing the gene encoding manganese-dependent superoxide dismutase for rapid species identification of enterococci. J Clin Microbiol 38:415–418Google Scholar
  23. 23.
    Kullen MK, Sanozky-Dawes RB, Crowell DC, Klaenhammer TR (2000) Use of the DNA sequence of variable regions of the 16S rRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J Appl Microbiol 89:511–516CrossRefGoogle Scholar
  24. 24.
    Almeida T, Brandao A, Muñoz-Atienza E, Gonçalves A, Torres C, Igrejas G, Hernández PE, Herranz C, Cintas LM, Poeta P (2011) Identification of bacteriocin genes in enterococci isolated from game animals and saltwater fish. J Food Prot 74:1252–1260CrossRefGoogle Scholar
  25. 25.
    Casaus MP, Nilsen T, Cintas LM, Nes IF, Hernández PE (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143:2287–2294CrossRefGoogle Scholar
  26. 26.
    Cintas LM, Casaus P, Havårstein LS, Hernández PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330Google Scholar
  27. 27.
    Cintas LM, Casaus P, Herranz C, Håvarstein LS, Holo H, Hernández PE, Nes IF (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 18:6806–6814CrossRefGoogle Scholar
  28. 28.
    Núñez M, Rodríquez JL, García E, Gaya P, Medina M (1997) Inhibition of Listeria monocytogenes by enterocin 4 during the manufacture and ripening of Manchego cheese. J Appl Microbiol 83:671–677CrossRefGoogle Scholar
  29. 29.
    Franz CM, Grube A, Herrmann A, Abriouel H, Starke J, Lombardi A, Tauscher B, Holzapfel WH (2002) Biochemical and genetic characterization of the two-peptide bacteriocin enterocin 1071 produced by Enterococcus faecalis FAIR-E 309. Appl Environ Microbiol 68:2550–2554CrossRefGoogle Scholar
  30. 30.
    Sánchez J, Diep DB, Herranz C, Nes IF, Cintas LM, Hernandez PE (2007) Amino acid and nucleotide sequence, adjacent genes, and heterologous expression of hiracin JM79, a sec-dependent bacteriocin produced by Enterococcus hirae DCH5, isolated from Mallard ducks (Anas platyrhynchos). FEMS Microbiol Lett 270:227–236CrossRefGoogle Scholar
  31. 31.
    Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635CrossRefGoogle Scholar
  32. 32.
    Tichaczek PS, Vogel RF, Hammes WP (1993) Cloning and sequencing of curA encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH1174. Arch Microbiol 160:279–283CrossRefGoogle Scholar
  33. 33.
    Eijsink VG, Brurberg MB, Middelhoven PH, Nes IF (1996) Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J Bacteriol 178:2232–2237Google Scholar
  34. 34.
    Cocolin L, Rantsiou K (2007) Sequencing and expression analysis of sakacin genes in Lactobacillus curvatus strains. Appl Microbiol Biotechnol 76:1403–1411CrossRefGoogle Scholar
  35. 35.
    Schillinger U, Lücke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906Google Scholar
  36. 36.
    Tichaczek PS, Nissen-Meyer J, Nes IF, Vogel RF, Hammes WP (1992) Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. Syst Appl Microbiol 15:460–468CrossRefGoogle Scholar
  37. 37.
    Citti R (2005) Aislamiento e identificación de bacterias lácticas bacteriocinogénicas de leches y quesos de búfala de Venezuela: actividad antimicrobiana y caracterización bioquímica y genética de sus bacteriocinas. Ph.D Thesis. Universidad Complutense de Madrid, Madrid, SpainGoogle Scholar
  38. 38.
    Cintas LM, Casaus P, Fernández MF, Hernández PE (1998) Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol 15:289–298CrossRefGoogle Scholar
  39. 39.
    Coque TM, Patterson JE, Steckelberg JM, Murray BE (1995) Incidence of hemolysin, gelatinase and aggregative substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J Infect Dis 171:1223–1229CrossRefGoogle Scholar
  40. 40.
    Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496Google Scholar
  41. 41.
    CLSI (2011) Performance standards for antimicrobial susceptibility testing: twenty–first informational supplement M100–S21. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  42. 42.
    González CJ, Encinas JP, García-López ML, Otero A (2000) Characterisation and identification of lactic acid bacteria from freshwater fishes. Food Microbiol 17:383–391CrossRefGoogle Scholar
  43. 43.
    Ringø E, Bendiksen HR, Wesmajervi MS, Olsen RE, Jansen PA, Mikkelsen H (2000) Lactic acid bacteria associated with the digestive tract of Atlantic salmon (Salmo salar L.). J Appl Microbiol 89:317–322CrossRefGoogle Scholar
  44. 44.
    Bucio A, Hartemink R, Schrama JW, Verreth J, Rombouts FM (2006) Presence of lactobacilli in the intestinal content of freshwater fish from a river and from a farm with recirculation system. Food Microbiol 23:476–482CrossRefGoogle Scholar
  45. 45.
    Alves VF, de Martinis ECP, Destro MT, Vogel BF, Gram L (2005) Antilisterial activity of Carnobacterium piscicola isolated from Brazilian smoked fish (surubim [Pseudoplatystoma sp.]) and its activity against a persistent strain of Listeria monocytogenes isolated from surubim. J Food Prot 68:2068–2077Google Scholar
  46. 46.
    Leroi F (2010) Occurrence and role of lactic acid bacteria in seafood products. Food Microbiol 27:698–709CrossRefGoogle Scholar
  47. 47.
    Nilsson L, Hansen TB, Garrido P, Buchrieser C, Glaser P, Knøchel S, Gram L, Gravesen A (2005) Growth inhibition of Listeria monocytogenes by a nonbacteriocinogenic Carnobacterium piscicola. J Appl Microbiol 98:172–183CrossRefGoogle Scholar
  48. 48.
    Messaoudi S, Kergourlay G, Dalgalarrondo M, Choiset Y, Ferchichi M, Prévost H, Pilet MF, Chobert JM, Manai M, Dousset X (2012) Purification and characterization of a new bacteriocin active against Campylobacter produced by Lactobacillus salivarius SMXD51. Food Microbiol 32:129–134CrossRefGoogle Scholar
  49. 49.
    Østergaard A, Embarek PKB, Wedell-Neergaard C, Huss HH, Gram L (1998) Characterization of anti-listerial lactic acid bacteria isolated from Thai fermented fish products. Food Microbiol 15:223–233CrossRefGoogle Scholar
  50. 50.
    Valenzuela AS, Benomar N, Abriouel H, Cañamero MM, Gálvez A (2010) Isolation and identification of Enterococcus faecium from seafoods: antimicrobial resistance and production of bacteriocin-like substances. Food Microbiol 27:955–961CrossRefGoogle Scholar
  51. 51.
    Migaw S, Ghrairi T, Le Chevalier P, Brillet B, Fleury Y, Hani K (2013) Isolation and characterization of enterococci bacteriocinic strains from Tunisian fish viscera. Food Nutr Sci 4:701–708CrossRefGoogle Scholar
  52. 52.
    Ishibashi N, Himeno K, Fujita K, Masuda Y, Perez RH, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K (2012) Purification and characterization of multiple bacteriocins and an inducing peptide produced by Enterococcus faecium NKR-5-3 from Thai fermented fish. Biosci Biotechnol Biochem 76:947–953CrossRefGoogle Scholar
  53. 53.
    Semedo T, Almeida Santos M, Martins P, Silva Lopes MF, Figueiredo Marques JJ, Tenreiro R, Barreto Crespo MT (2003) Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J Clin Microbiol 41:2569–2576CrossRefGoogle Scholar
  54. 54.
    EFSA (2013) Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). EFSA J 11:3449Google Scholar
  55. 55.
    Ogier JC, Serror P (2008) Safety assessment of dairy microorganisms: the Enterococcus genus. Int J Food Microbiol 126:291–301CrossRefGoogle Scholar
  56. 56.
    Franz CM, Stiles ME, Schleifer KH, Holzapfel WH (2003) Enterococci in foods—a conundrum for food safety. Int J Food Microbiol 88:105–122CrossRefGoogle Scholar
  57. 57.
    Abriouel H, Omar NB, Molinos AC, López RL, Grande MJ, Martínez-Viedma P, Ortega E, Canamero MM, Gálvez A (2008) Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. Int J Food Microbiol 123:38–49CrossRefGoogle Scholar
  58. 58.
    Kopermsub P, Yunchalard S (2010) Identification of lactic acid bacteria associated with the production of plaa-som, a traditional fermented fish product of Thailand. Int J Food Microbiol 138:200–204CrossRefGoogle Scholar
  59. 59.
    Mauguin S, Novel G (1994) Characterization of lactic acid bacteria isolated from seafood. J Appl Microbiol 76:616–625Google Scholar
  60. 60.
    Belfiore C, Björkroth J, Vihavainen E, Raya R, Vignolo G (2010) Characterization of Leuconostoc strains isolated from fresh anchovy (Engraulis anchoita). J Gen Appl Microbiol 56:175–180CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Beatriz Gómez-Sala
    • 1
  • Estefanía Muñoz-Atienza
    • 1
  • Jorge Sánchez
    • 1
  • Antonio Basanta
    • 1
  • Carmen Herranz
    • 1
  • Pablo E. Hernández
    • 1
  • Luis M. Cintas
    • 1
  1. 1.Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de VeterinariaUniversidad Complutense de MadridMadridSpain

Personalised recommendations