Advertisement

European Food Research and Technology

, Volume 240, Issue 5, pp 939–960 | Cite as

Effect of substrate type on sensory characteristics and antioxidant capacity of sunflower Maillard reaction products

  • Eric Karangwa
  • Xiaoming ZhangEmail author
  • Nicole Murekatete
  • Kingsley Masamba
  • Linda Virginie Raymond
  • Abbas Shabbar
  • Yating Zhang
  • Emmanuel Duhoranimana
  • Bertrand Muhoza
  • Shiqing Song
Original Paper

Abstract

The sensory characteristics and antioxidant capacity of Maillard reaction products (MRPs) from two substrates namely sunflower free amino acid and peptides, xylose with and without cysteine model systems (AXC, AX, PXC and PX, respectively) were evaluated and compared. The model systems were heated at 120 °C for 2.0 h and a pH of 7.4. Results showed that AXC had greater meat-like flavour and umami taste, while PXC showed great mouthfulness and continuity taste, and AX and PX showed higher caramel-like flavour and bitter taste. The addition of cysteine was found to accelerate high molecular weight peptide degradation while suppressing low molecular weight cross-linking and colour formation in PXC and AXC. Furthermore, it was observed that sensory attributes of MRPs were not significantly affected by the peptides size. Results also showed that caramel-like flavour and bitter taste were significantly and positively correlated with furans and most of the nitrogen-containing compounds while these compounds had significant and negative impact on mouthfulness, continuity and meat-like flavour. Additionally, sulphur-containing compounds showed significant and positive influence on meat-like flavour, while PXC and PX showed higher antioxidant activities than AXC and AX. It can therefore be concluded that sunflower peptides MRPs can be a good precursor of flavour enhancers with high antioxidant activity, while sunflower free amino acid MRPs can be used to produce meat-like flavour enhancers.

Keywords

Sensory attributes Substrate types Maillard reaction products Antioxidant capacity Partial least square regression 

Abbreviations

MRPs

Maillard reaction products

PXC

Peptide–xylose–cysteine

PX

Peptide–xylose

AXC

Free amino acid–xylose–cysteine

AX

Free amino acid–xylose

HMW

High molecular weight

LMW

Low molecular weight

DPPH

2,2-Diphenyl-1-picryl-hydrazyl-hydrate

PLSR

Partial least square regression

PC

Principal component

SFPI

Sunflower protein isolates

SFPH

Sunflower protein hydrolysates

SFAA

Sunflower free amino acid

MW

Molecular weight

FAA

Free amino acid

TAA

Total amino acid

GSH-MRPs

Glutathione Maillard reaction products

Notes

Acknowledgments

The research was supported in part by the National Natural Science Foundation of China 31071602. It was also founded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Shahidi F (ed) (1998) Flavour of meat, meat products, and seafoods, 2nd edn. Blackie Academic & Professional, LondonGoogle Scholar
  2. 2.
    Eric K, Raymond LV, Abbas S, Song S, Zhang Y, Masamba K, Zhang X (2014) Temperature and cysteine addition effect on formation of sunflower hydrolysate Maillard reaction products and corresponding influence on sensory characteristics assessed by partial least square regression. Food Res Int 57:242–258. doi: 10.1016/j.foodres.2014.01.030 CrossRefGoogle Scholar
  3. 3.
    Eric K, Raymond LV, Huang M, Cheserek MJ, Hayat K, Savio ND, Amédée M, Zhang X (2013) Sensory attributes and antioxidant capacity of Maillard reaction products derived from xylose, cysteine and sunflower protein hydrolysate model system. Food Res Int 54(2):1437–1447. doi: 10.1016/j.foodres.2013.09.034 CrossRefGoogle Scholar
  4. 4.
    Blenford DE (1994) Protein hydrolysates: functionalities and uses in nutritional products. Int Foods Ingred 3:45Google Scholar
  5. 5.
    Aaslyng MD, Martens M, Poll L, Nielsen PM, Flyge H, Larsen LM (1998) Chemical and sensory characterization of hydrolyzed vegetable protein, a savory flavouring. J Agric Food Chem 46(2):481–489. doi: 10.1021/jf970556e CrossRefGoogle Scholar
  6. 6.
    Ames J (1992) The Maillard reaction. In: Hudson BJF (ed) Biochemistry of food proteins. Springer, New York, pp 99–153. doi: 10.1007/978-1-4684-9895-0_4 CrossRefGoogle Scholar
  7. 7.
    Liu P, Huang MG, Song SQ, Hayat K, Zhang XM, Xia SQ, Jia CS (2012) Sensory characteristics and antioxidant activities of Maillard reaction products from soy protein hydrolysates with different molecular weight distribution. Food Bioprocess Technol 5(5):1775–1789. doi: 10.1007/s11947-010-0440-3 CrossRefGoogle Scholar
  8. 8.
    Lingnert H, Eriksson CE (1980) Antioxidative Maillard reaction products. I. Products from sugars and free amino acids. J Food Process Preserv 4(3):161–172. doi: 10.1111/j.1745-4549.1980.tb00602.x CrossRefGoogle Scholar
  9. 9.
    Lingnert H, Eriksson CE (1980) Antioxidative Maillard reaction products. II. Products from sugars and peptides or protein hydrolysates. J Food Process Preserv 4(3):173–181. doi: 10.1111/j.1745-4549.1980.tb00603.x CrossRefGoogle Scholar
  10. 10.
    Kim J-S, Lee Y-S (2009) Antioxidant activity of Maillard reaction products derived from aqueous glucose/glycine, diglycine, and triglycine model systems as a function of heating time. Food Chem 116(1):227–232. doi: 10.1016/j.foodchem.2009.02.038 CrossRefGoogle Scholar
  11. 11.
    Huang MG, Liu P, Song SQ, Zhang XM, Hayat K, Xia SQ, Jia CS, Gu FL (2011) Contribution of sulphur-containing compounds to the colour-inhibiting effect and improved antioxidant activity of Maillard reaction products of soybean protein hydrolysates. J Sci Food Agric 91(4):710–720. doi: 10.1002/Jsfa.4240 CrossRefGoogle Scholar
  12. 12.
    Fekkes D, van Dalen A, Edelman M, Voskuilen A (1995) Validation of the determination of amino acids in plasma by high-performance liquid chromatography using automated pre-column derivatization with o-phthaldialdehyde. J Chromatogr B 669(2):177–186. doi: 10.1016/0378-4347(95)00111-u CrossRefGoogle Scholar
  13. 13.
    ISO (1993) Sensory analysis—methodology general guidance for the selection, training and monitoring of assessors [ref. no.ISO 8586-1:1993(E)]. International Standard 8586-1. Geneva, SwitzerlandGoogle Scholar
  14. 14.
    ISO (2007) sensory analysis-general guidance for the design of test rooms [Ref. no. ISO 8589:2007(E)]. International Standard 8589. Geneva, SwitzerlandGoogle Scholar
  15. 15.
    Ogasawara M, Katsumata T, Egi M (2006) Taste properties of Maillard-reaction products prepared from 1000 to 5000 Da peptide. Food Chem 99(3):600–604. doi: 10.1016/j.foodchem.2005.08.040 CrossRefGoogle Scholar
  16. 16.
    Ogasawara M, Yamada Y, Egi M (2006) Taste enhancer from the long-term ripening of miso (soybean paste). Food Chem 99(4):736–741. doi: 10.1016/j.foodchem.2005.08.051 CrossRefGoogle Scholar
  17. 17.
    Gu F, Kim JM, Hayat K, Xia S, Feng B, Zhang X (2009) Characteristics and antioxidant activity of ultrafiltrated Maillard reaction products from a casein–glucose model system. Food Chem 117(1):48–54. doi: 10.1016/j.foodchem.2009.03.074 CrossRefGoogle Scholar
  18. 18.
    O’Mahony M, Tannenbaum SR, Walstra P (1986) Fixed-and random-effects models. In: Dekker M (ed) Sensory evaluation of food-statistical methods and procedures. CRC Press, New York, pp 247–257Google Scholar
  19. 19.
    Morales FJ, Jiménez-Pérez S (2001) Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chem 72(1):119–125. doi: 10.1016/s0308-8146(00)00239-9 CrossRefGoogle Scholar
  20. 20.
    Benjakul S, Visessanguan W, Phongkanpai V, Tanaka M (2005) Antioxidative activity of caramelisation products and their preventive effect on lipid oxidation in fish mince. Food Chem 90(1–2):231–239. doi: 10.1016/j.foodchem.2004.03.045 CrossRefGoogle Scholar
  21. 21.
    Ajandouz EH, Puigserver A (1999) Nonenzymatic browning reaction of essential amino acids: effect of pH on caramelization and Maillard reaction kinetics. J Agric Food Chem 47(5):1786–1793. doi: 10.1021/jf980928z CrossRefGoogle Scholar
  22. 22.
    Ibarz A, Pagán J, Garza S (1999) Kinetic models for colour changes in pear puree during heating at relatively high temperatures. J Food Eng 39(4):415–422. doi: 10.1016/S0260-8774(99)00032-1 CrossRefGoogle Scholar
  23. 23.
    Riha WE, Izzo HV, Zhang J, Ho CT (1996) Nonenzymatic deamidation of food proteins. Crit Rev Food Sci Nutr 36(3):225–255. doi: 10.1080/10408399609527724 CrossRefGoogle Scholar
  24. 24.
    Lan X, Liu P, Xia S, Jia C, Mukunzi D, Zhang X, Xia W, Tian H, Xiao Z (2010) Temperature effect on the non-volatile compounds of Maillard reaction products derived from xylose–soybean peptide system: further insights into thermal degradation and cross-linking. Food Chem 120(4):967–972. doi: 10.1016/j.foodchem.2009.11.033 CrossRefGoogle Scholar
  25. 25.
    Song S, Zhang X, Hayat K, Jia C, Xia S, Zhong F, Xiao Z, Tian H, Niu Y (2010) Correlating chemical parameters of controlled oxidation tallow to gas chromatography–mass spectrometry profiles and e-nose responses using partial least squares regression analysis. Sens Actuators B Chem 147(2):660–668. doi: 10.1016/j.snb.2010.03.055 CrossRefGoogle Scholar
  26. 26.
    Ueda Y, Yonemitsu M, Tsubuku T, Sakaguchi M, Miyajima R (1997) Flavour characteristics of glutathione in raw and cooked foodstuffs. Biosci Biotechnol Biochem 61(12):1977–1980CrossRefGoogle Scholar
  27. 27.
    Van Boekel MAJS (2006) Formation of flavour compounds in the Maillard reaction. Biotechnol Adv 24(2):230–233. doi: 10.1016/j.biotechadv.2005.11.004 CrossRefGoogle Scholar
  28. 28.
    Yang BG, Liu SC (1983) Studies on the bitterness of protein. Food Sci Biotechnol 12:1–2Google Scholar
  29. 29.
    Zhang Y, Dorjpalam B, Ho CT (1992) Contribution of peptides to volatile formation in the Maillard reaction of casein hydrolysate with glucose. J Agric Food Chem 40(12):2467–2471. doi: 10.1021/jf00024a026 CrossRefGoogle Scholar
  30. 30.
    Methven L, Tsoukka M, Oruna-Concha MJ, Parker JK, Mottram DS (2007) Influence of sulphur amino acids on the volatile and nonvolatile components of cooked salmon (Salmo salar). J Agric Food Chem 55(4):1427–1436CrossRefGoogle Scholar
  31. 31.
    Yaylayan VA (2006) Precursors, formation and determination of furan in food. J Verbrauch Lebensm 1(1):5–9. doi: 10.1007/s00003-006-0003-8 CrossRefGoogle Scholar
  32. 32.
    Xu H, Gao Y, Liu X, Zhao J (2008) Effects of supercritical carbon dioxide on volatile formation from Maillard reaction between ribose and cysteine. J Sci Food Agric 88(2):328–335. doi: 10.1002/jsfa.3093 CrossRefGoogle Scholar
  33. 33.
    Vernin G, Parkanyi C (1982) Occurrence and formation of heterocyclic compounds. In: Vernin G (ed) The chemistry of heterocyclic and aroma compounds. Ellis Horwood, New York, pp 192–198Google Scholar
  34. 34.
    Tan Z-W, Yu A-N (2012) Volatiles from the Maillard reaction of l-ascorbic acid with l-glutamic acid/l-aspartic acid at different reaction times and temperatures. Asia Pac J Chem Eng 7(4):563–571. doi: 10.1002/apj.607 CrossRefGoogle Scholar
  35. 35.
    Chen J, Ho C-T (1999) Comparison of volatile generation in serine/threonine/glutamine–ribose/glucose/fructose model systems. J Agric Food Chem 47:643–647CrossRefGoogle Scholar
  36. 36.
    Baltes W, Bochmann G (1987) Model reactions on roast aroma formation. Z Lebensm Unters Forch 184(6):478–484. doi: 10.1007/BF01027746 CrossRefGoogle Scholar
  37. 37.
    Tai C-Y, Ho C-T (1998) Influence of glutathione oxidation and pH on thermal formation of maillard-type volatile compounds. J Agric Food Chem 46(6):2260–2265. doi: 10.1021/jf971111t CrossRefGoogle Scholar
  38. 38.
    Madruga MS, Mottram DS (1998) The effect of pH on the formation of volatile compounds produced by heating a model system containing 5′-Imp and cysteine. J Braz Chem Soc 9(3):261–271CrossRefGoogle Scholar
  39. 39.
    Lee SM, Jo Y-J, Kim Y-S (2010) Investigation of the aroma-active compounds formed in the Maillard reaction between glutathione and reducing sugars. J Agric Food Chem 58(5):3116–3124. doi: 10.1021/jf9043327 CrossRefGoogle Scholar
  40. 40.
    Sakaguchi M, Shibamoto T (1978) Formation of sulphur-containing compounds from the reaction of d-glucose and hydrogen sulfide. J Agric Food Chem 26(5):1260–1262. doi: 10.1021/jf60219a052 CrossRefGoogle Scholar
  41. 41.
    Xu H, Liu X, Zhao J, Gao Y (2008) Effects of ribose to cysteine ratios on the formation of volatile compounds from the Maillard reaction in supercritical carbon dioxide. Food Res Int 41(7):730–737. doi: 10.1016/j.foodres.2008.05.005 CrossRefGoogle Scholar
  42. 42.
    Gasser U, Grosch W (1988) Identification of volatile flavour compounds with high aroma values from cooked beef. Z Lebensm Unters Forsch A 186(6):489–494Google Scholar
  43. 43.
    Gasser U, Grosch W (1990) Primary odorants of chicken broth. Z Lebensm Unters Forch 190(1):3–8. doi: 10.1007/bf01188254 CrossRefGoogle Scholar
  44. 44.
    Sanz C, Czerny M, Cid C, Schieberle P (2002) Comparison of potent odorants in a filtered coffee brew and in an instant coffee beverage by aroma extract dilution analysis (AEDA). Eur Food Res Technol 214(4):299–302. doi: 10.1007/s00217-001-0459-9 CrossRefGoogle Scholar
  45. 45.
    Su GW, Zheng L, Cui C, Yang B, Ren JY, Zhao MM (2011) Characterization of antioxidant activity and volatile compounds of Maillard reaction products derived from different peptide fractions of peanut hydrolysate. Food Res Int 44(10):3250–3258. doi: 10.1016/j.foodres.2011.09.009 CrossRefGoogle Scholar
  46. 46.
    Yaylayan VA (2003) Recent advances in the chemistry of Strecker degradation and Amadori rearrangement: implications to aroma and colour formation. Food Sci Technol Res 9(1):1–6CrossRefGoogle Scholar
  47. 47.
    Lee SM, Seo BC, Kim Y-S (2006) Volatile compounds in fermented and acid-hydrolyzed soy sauces. J Food Sci 71(3):C146–C156. doi: 10.1111/j.1365-2621.2006.tb15610.x CrossRefGoogle Scholar
  48. 48.
    Berdagué JL, Monteil P, Montel MC, Talon R (1993) Effects of starter cultures on the formation of flavour compounds in dry sausage. Meat Sci 35(3):275–287. doi: 10.1016/0309-1740(93)90033-E CrossRefGoogle Scholar
  49. 49.
    Xu Y, Chen Q, Lei S, Wu P, Fan G, Xu X, Pan S (2011) Effects of lard on the formation of volatiles from the Maillard reaction of cysteine with xylose. J Sci Food Agric 91(12):2241–2246. doi: 10.1002/jsfa.4445 Google Scholar
  50. 50.
    Horiuchi M, Umano K, Shibamoto T (1998) Analysis of volatile compounds formed from fish oil heated with cysteine and trimethylamine oxide. J Agric Food Chem 46(12):5232–5237. doi: 10.1021/jf980482m CrossRefGoogle Scholar
  51. 51.
    Chu FL, Yaylayan VA (2008) Model studies on the oxygen-induced formation of benzaldehyde from phenylacetaldehyde using pyrolysis GC–MS and FTIR. J Agric Food Chem 56(22):10697–10704CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Ho CT (1989) Volatile compounds formed from thermal interaction of 2,4-decadienal with cysteine and glutathione. J Agric Food Chem 37(4):1016–1020. doi: 10.1021/jf00088a044 CrossRefGoogle Scholar
  53. 53.
    Wang HL, Hesseltine CW (1970) Sufu and lao-chao. J Agric Food Chem 18(4):572–575. doi: 10.1021/jf60170a046 CrossRefGoogle Scholar
  54. 54.
    Hodge J (1967) Origin of flavour in foods nonenzymatic browning reactions. In: Schultz HW, Day EA, Libbey LM (eds) Chemistry and physiology of flavours. AVI, Westport, pp 465–491Google Scholar
  55. 55.
    Martens H, Martens M (2000) Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual Prefer 11(1–2):5–16. doi: 10.1016/S0950-3293(99)00039-7 CrossRefGoogle Scholar
  56. 56.
    Aaslyng MD, Elmore JS, Mottram DS (1998) Comparison of the aroma characteristics of acid-hydrolyzed and enzyme-hydrolyzed vegetable proteins produced from soy. J Agric Food Chem 46(12):5225–5231. doi: 10.1021/jf9806816 CrossRefGoogle Scholar
  57. 57.
    Ho C-T, Oh Y-C, Zhang Y, Shu C-K (1992) Peptides as flavour precursors in model Maillard reactions. In: Flavour precursors, vol 490. ACS symposium series, vol 490. American Chemical Society, pp 193–202. doi: 10.1021/bk-1992-0490.ch015
  58. 58.
    Hofmann T, Schieberle P, Grosch W (1996) Model studies on the oxidative stability of odor-active thiols occurring in food flavours. J Agric Food Chem 44(1):251–255. doi: 10.1021/jf9500703 CrossRefGoogle Scholar
  59. 59.
    Macku C, Shibamoto T (1991) Volatile sulphur-containing compounds generated from the thermal interaction of corn oil and cysteine. J Agric Food Chem 39(11):1987–1989. doi: 10.1021/jf00011a021 CrossRefGoogle Scholar
  60. 60.
    Majcher MA, Jeleń HH (2007) Effect of cysteine and cystine addition on sensory profile and potent odorants of extruded potato snacks. J Agric Food Chem 55(14):5754–5760. doi: 10.1021/jf0703147 CrossRefGoogle Scholar
  61. 61.
    Mottram DS, Madruga MS (1994) Important sulphur-containing aroma volatiles in meat. In: Sulphur compounds in foods, vol 564. ACS symposium series, vol 564. American Chemical Society, pp 180–187. doi: 10.1021/bk-1994-0564.ch015
  62. 62.
    Mottram DS, Whitfield FB (eds) (1994) Aroma volatiles from meat-like Maillard systems. Thermally generated flavours. Maillard, microwave and extrusion processes. ACS symposium series 543; American Chemical Society, Washington, DCGoogle Scholar
  63. 63.
    Saiga A, Tanabe S, Nishimura T (2003) Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J Agric Food Chem 51(12):3661–3667. doi: 10.1021/jf021156g CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eric Karangwa
    • 1
    • 2
  • Xiaoming Zhang
    • 1
    Email author
  • Nicole Murekatete
    • 1
    • 2
  • Kingsley Masamba
    • 1
    • 3
  • Linda Virginie Raymond
    • 1
  • Abbas Shabbar
    • 1
  • Yating Zhang
    • 1
  • Emmanuel Duhoranimana
    • 1
    • 2
  • Bertrand Muhoza
    • 1
    • 2
  • Shiqing Song
    • 4
  1. 1.State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.Department of Food Technology, School of Food Science and TechnologyNational University of RwandaKigaliRwanda
  3. 3.Department of Food Science and TechnologyLilongwe University Agriculture and Natural ResourcesLilongweMalawi
  4. 4.School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiPeople’s Republic of China

Personalised recommendations