European Food Research and Technology

, Volume 240, Issue 2, pp 431–439 | Cite as

Characterization of novel insect associated peptidases for hydrolysis of food proteins

  • Nicole Mika
  • Vladimir Gorshkov
  • Bernhard Spengler
  • Holger Zorn
  • Martin Rühl
Original Paper


Insects are able to feed on a broad spectrum of nutritional sources, due to a variable enzymatic system which can be endogenic or provided by associated microorganisms. This enzymatic system may be employed for the hydrolysis of industrial relevant proteins. Several grain pests were screened for their ability to hydrolyze storage proteins from wheat and rice as well as casein. Zymograms identified hydrolytic activities of the lesser grain borer Rhizopertha dominica against gluten and rice protein. Besides, R. dominica showed the highest prolyl-specific peptidase activity among all tested insects. Enzyme extracts of R. dominica were purified via anion exchange chromatography using a fast protein liquid chromatography system. Two of the purified peptidase fractions were able to hydrolyze peptides from wheat and barley relevant for celiac disease showing a proline preferential cleaving pattern.


Rhizopertha dominica Celiac disease Prolyl-specific peptidase Gluten 



The authors thank Dr. Jochen Wiesner and Rüdiger Lehmann of the LOEWE Center for Insect Biotechnology and Bioresources for providing the R. dominica transcriptome. The study was financially supported by the excellence initiative of the Hessian Ministry of Science and Art which encompasses a generous grant for the LOEWE focus “Insect Biotechnology” and the Center for Insect Biotechnology and Bioresources. We also thank Prof. Dr. Peter Köhler and his group from the German Research Center for Food Chemistry for the support regarding the hydrolysis of peptides P1 and P2.

Conflict of interest


Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.


  1. 1.
    Fraatz MA, Rühl M, Zorn H (2013) Food and feed enzymes. Adv Biochem Eng/Biotechnol. doi: 10.1007/10_2013_235 Google Scholar
  2. 2.
    Hendriksen HV, Kornbrust BA, Østergaard PR, Stringer MA (2009) Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae. J Agric Food Chem 57:4168–4176CrossRefGoogle Scholar
  3. 3.
    Priyadharshini R, Manoharan S, Hemalatha D, Gunasekaran P (2010) Repeated random mutagenesis of α-amylase from Bacillus licheniformis for improved pH performance. J Microbiol Biotechnol 20:1696–1701Google Scholar
  4. 4.
    Mika N, Zorn H, Rühl M (2013) Insect-derived enzymes: a treasure for industrial biotechnology and food biotechnology. Adv Biochem Eng/Biotechnol. doi: 10.1007/10_2013_204 Google Scholar
  5. 5.
    Green P, Cellier C (2007) Celiac disease. N Engl J Med 357:1731–1743CrossRefGoogle Scholar
  6. 6.
    Stepniak D, Spaenij-Dekking L, Mitea C, Moester M, de Ru A, Baak-Pablo R, van Veelen P, Edens L, Koning F (2006) Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. Am J Physiol Gastrointest Liver Physiol 291:G621–G629CrossRefGoogle Scholar
  7. 7.
    Vader LW, Stepniak D, Bunnik E, Kooy Y, de Haan W, Drijfhout J, van Veelen P, Koning F (2003) Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology 125:1105–1113CrossRefGoogle Scholar
  8. 8.
    Vader LW, De Ru A, van de Wal Y, Kooy YM, Benckhuijsen W, Mearin ML, Drijfhout JW, van Veelen P, Koning F (2002) Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med 195:643–649CrossRefGoogle Scholar
  9. 9.
    Catassi C, Rossini M, Ratsch IM (1993) Dose dependent effects of protracted ingestion of small amounts of gliadin in coeliac disease children: a clinical and jejunal morphometric study. Gut 34:1515–1519CrossRefGoogle Scholar
  10. 10.
    Schwalb T, Wieser H, Köhler P (2011) Vergleich verschiedener proteinreferenzen und ELISA-kits. Dtsch Lebensm Rundsch 107:306–312Google Scholar
  11. 11.
    Stressler T, Eisele T, Schlayer M, Lutz-Wahl S, Fischer L (2013) Characterization of the recombinant exopeptidases PepX and PepN from Lactobacillus helveticus ATCC 12046 important for food protein hydrolysis. PLoS One. doi: 10.1371/journal.pone.0070055 Google Scholar
  12. 12.
    Rizzello C, De Angelis M, Di Cagno R, Camarca A, Silano M, Losito I, De Vincenzi M, De Bari M, Palmisano F, Maurano F, Gianfrani C, Gobbetti M (2007) Highly efficient gluten degradation by Lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol 73:4499–4507CrossRefGoogle Scholar
  13. 13.
    Schwalb T, Wieser H, Köhler P (2012) Studies on the gluten-specific peptidase activity of germinated grains from different cereal species and cultivars. Eur Food Res Technol 235:1161–1170CrossRefGoogle Scholar
  14. 14.
    Walter T, Wieser H, Köhler P (2014) Production of gluten-free starch by peptidase treatment. J Cereal Sci 60:202–209CrossRefGoogle Scholar
  15. 15.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  16. 16.
    Machado Pereira M, Alcântara Silva B, Ribeiro Pinto M, Barreto-Bergter E, Souza dos Santos AL (2009) Proteins and peptidases from conidia and mycelia of Scedosporium apiospermum strain HLPB. Mycopathology 167:25–30CrossRefGoogle Scholar
  17. 17.
    Kilcawley K, Wilkinson M, Fox P (2002) Determination of key enzyme activities in commercial peptidase and lipase preparations from microbial or animal sources. Enzyme Microb Technol 31:310–320CrossRefGoogle Scholar
  18. 18.
    Lottenberg R, Jackson CM (1983) Solution composition dependent variation in extinction coefficients for p-Nitroanilide. Biochim Biophys Acta (Protein Struct Mol Enzym) 742:558–564CrossRefGoogle Scholar
  19. 19.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  20. 20.
    Geßendorfer B, Hartmann G, Wieser H (2011) Determination of celiac disease-specific peptidase activity of germinated cereals. Eur Food Res Technol 232:205–209CrossRefGoogle Scholar
  21. 21.
    Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefGoogle Scholar
  22. 22.
    Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989CrossRefGoogle Scholar
  23. 23.
    Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefGoogle Scholar
  24. 24.
    Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, del Mar Jimenez-Gasco M, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. PNAS 105:12932–12937CrossRefGoogle Scholar
  25. 25.
    Mehrabadi M, Bandini AR, Saadati F, Mahmudvand M (2011) α-Amylase activity of stored products insects and its inhibition by medicinal plant extracts. J Agric Sci Technol (Tehran, Islam Repub Iran) 13:1173–1182Google Scholar
  26. 26.
    Prabhakar S, Chen MS, Elpidina EN, Vinokurov KS, Smith CM, Marshall J, Oppert B (2007) Sequence analysis and molecular characterization of larval midgut cDNA transcripts encoding peptidases from the yellow mealworm, Tenebrio molitor L. Insect Mol Biol 16:455–468CrossRefGoogle Scholar
  27. 27.
    Vinokurov KS, Elpidina EN, Oppert B, Prabhakar S, Zhuzhikov DP, Dunaevsky YE, Belozersky MA (2006) Fractionation of digestive proteinases from Tenebrio molitor (Coleoptera: tenebrionidae) larvae and role in protein digestion. Comp Biochem Physiol Part B 145:138–146CrossRefGoogle Scholar
  28. 28.
    Goptar IA, Semashko TA, Danilenko SA, Lysogorskaya EN, Oksenoit ES, Zhuzhikov DP, Belozersky MA, Dunaevsky YE, Oppert B, Filippova IYu, Elpidina EN (2012) Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored-product pests. Comp Biochem Physiol Part B 161:148–154CrossRefGoogle Scholar
  29. 29.
    Morris K, Lorenzen MD, Hiromasa Y, Tomich JM, Oppert C, Elpidina EN, Vinokurov K, Jurat-Fuentes JL, Fabrick J, Oppert B (2009) Tribolium castaneum larval gut transcriptome and proteome: a resource for the study of the coleopteran gut. J Proteome Res 8:3889–3898CrossRefGoogle Scholar
  30. 30.
    Pasternack R, Marx S, Jordan D (2006) Prolamin-reduced beverages and methods for the preparation thereof. World Pat 2006051093 May 2006Google Scholar
  31. 31.
    Hartmann G, Köhler P, Wieser H (2006) Rapid degradation of gliadin peptides toxic for coeliac disease patients by proteases from germinating cereals. J Cereal Sci 44:368–371CrossRefGoogle Scholar
  32. 32.
    Zhu YC, Baker JE (2000) Molecular cloning and characterization of a midgut chymotrypsin-like enzyme from the lesser grain borer, Rhyzopertha dominica. Archi Insect Biochem Physiol 43:173–184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nicole Mika
    • 1
  • Vladimir Gorshkov
    • 2
  • Bernhard Spengler
    • 2
  • Holger Zorn
    • 1
  • Martin Rühl
    • 1
  1. 1.Institute of Food Chemistry and Food BiotechnologyJustus Liebig University GiessenGiessenGermany
  2. 2.Institute of Inorganic and Analytical ChemistryJustus Liebig University GiessenGiessenGermany

Personalised recommendations