European Food Research and Technology

, Volume 238, Issue 4, pp 597–605 | Cite as

Characterization and amino acid metabolism performances of indigenous Oenococcus oeni isolated from Chinese wines

Original Paper
  • 319 Downloads

Abstract

Oenococcus oeni is a multiple physical stress-tolerant lactic acid bacterium that plays an important role in wine making. It is often added as a starter culture to carry out malolactic fermentation (MLF). In this study, a total of 22 out of 127 lactic acid bacteria, isolated from Chinese wines undergoing MLF, were identified as O. oeni by species-specific PCR and 16S rRNA sequencing. Single-enzyme amplified fragment length polymorphism (SE-AFLP) analysis showed that all strains could be typed under these conditions, and three main groups were determined by cluster analysis, which showed intraspecific homology higher than 69 %. Eight strains, representative of SE-AFLP clusters, were tested for malolactic activity. Significant differences were observed among strains with regard to the amount of malic acid consumed. Seventeen amino acids in different wines that were inoculated by 4 O. oeni strains, respectively, were analyzed before and after MLF. The results indicated that the amino acid metabolism of the 4 strains was significantly different between each strain.

Keywords

Oenococcus oeni Species-specific PCR 16S rRNA sequences SE-AFLP Amino acid metabolism 

Notes

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Supplementary material

217_2013_2112_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)

References

  1. 1.
    Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud-Funel A (2006) Handbook of enology: the microbiology of wine and vinifications, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  2. 2.
    Claire LM, Elisabeth B, Aline LF (2007) Tolerance to high osmolality of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants. Int J Food Microbiol 115:335–342CrossRefGoogle Scholar
  3. 3.
    Lonvaud-Funel Aline (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76(317–331):1999Google Scholar
  4. 4.
    Renouf V, Delaherche A, Claisse O, Lonvaud-Funel A (2008) Correlation between indigenous Oenococcus oeni strain resistance and the presence of genetic markers. J Ind Microbiol Biotechnol 35:27–33CrossRefGoogle Scholar
  5. 5.
    Plessis HW, Dicks LMT, Pretorius IS, Lambrechts MG, Toit M (2004) Identification of lactic acid bacteria isolated from South African brandy base wines. Int J Food Microbiol 91:19–29CrossRefGoogle Scholar
  6. 6.
    Martinez-Murica AJ, Harland NM, Collins MD (1993) Phylogenetic analysis of some Leuconostoc and related organisms as determined from large-subunit rRNA gene sequences, assessment of congruence of small and large-subunit rRNA derived trees. J Appl Bacteriol 74:532–541Google Scholar
  7. 7.
    Zavaleta AI, Martinez-Murcia AJ, Rodriguez-Valera F (1997) Intraspecific genetic diversity of Oenococcus oeni as derived from DNA fingerprinting and sequence analyses. Appl Environ Microbiol 63:1261–1267Google Scholar
  8. 8.
    Hirschhäuser S, Fröhlich J, Gneipel A, Schönig A, König H (2005) Fast protocols for the 5S rDNA and ITS-2 based identification of Oenococcus oeni. FEMS Microbiol Lett 244:165–171CrossRefGoogle Scholar
  9. 9.
    Zapparoli G, Torriani S, Pesente P, Dellaglio F (1998) Design and evaluation of malolactic enzyme gene targeted primers for rapid identification and detection of Oenococcus oeni in wine. Appl Microbiol 27:243–246CrossRefGoogle Scholar
  10. 10.
    Cappello MS, Stefani D, Grieco F, Logrieco A, Zapparoli G (2008) Genotyping by amplified fragment length polymorphism and malate metabolism performances of indigenous Oenococcus oeni strains isolated from Primitivo wine. Int J Food Microbiol 127:241–245CrossRefGoogle Scholar
  11. 11.
    Maria AS, Maria GB, Giovanni S (2008) Isolation and characterization of Oenococcus oeni from Aglianico wines. World J Microbiol Biotechnol 24:1829–1835CrossRefGoogle Scholar
  12. 12.
    Zapparoli G, Reguant C, Bordons A, Torriani S, Dellaglio F (2000) Genomic DNA fingerprinting of Oenococcus oeni strains by pulsed-field gel electrophoresis and randomly amplified polymorphic DNA-PCR. Curr Microbiol 40:351–355CrossRefGoogle Scholar
  13. 13.
    Hua L, Chunhui Z, Yanlin L (2006) Species attribution and distinguishing strains of Oenococcus oeni isolated from Chinese wines. World J Microbiol Biotechnol 22:515–518CrossRefGoogle Scholar
  14. 14.
    de las Rivas B, Marcobal A, Muñoz R (2004) Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of housekeeping genes. Appl Environ Microbiol 70:7210–7219CrossRefGoogle Scholar
  15. 15.
    Delaherche A, Bon E, Dupé A, Lucas M, Arveilher B, de Daruvar A, Lonvaud-Funel A (2006) Intraspecific diversity of Oenococcus oeni strains determined by sequence analysis of target genes. Appl Microbiol Biotechnol 73:394–403CrossRefGoogle Scholar
  16. 16.
    Larisika M, Claus H, König H (2008) Pulsed-field gel electrophoresis for the discrimination of Oenococcus oeni isolates from different wine-growing regions in Germany. Int J Food Microbiol 123:171–176CrossRefGoogle Scholar
  17. 17.
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Horners M, Frijters A, Pot J, Peleman J, Muiper M, Zabeau M (1995) AFLP: a new concept for DNA fingerprinting. Nucleic Acids Res 21:4407–4414CrossRefGoogle Scholar
  18. 18.
    Rico A, Ortiz-Barredo A, Ritter E, Murillo J (2004) Genetic characterization of Erwinia amylovora strains by amplified fragment length polymorphism. J Appl Microbiol 96:302–310CrossRefGoogle Scholar
  19. 19.
    Hong Y, García M, Levisohn S, Savelkoul P, Leiting V, Lysnyansky I, Ley DH, Kleven SH (2005) Differentiation of Mycoplasma gallisepticum strains using amplified fragment length polymorphism and other DNA-based typing methods. Avian Dis 49:43–49CrossRefGoogle Scholar
  20. 20.
    Claudia PJ, Fabio AAG, Mauricio BM, Zulma RS, Dolly M (2006) AFLP fingerprinting of Colombian Clostridium spp strains, multivariate data analysis and its taxonomical implications. J Microbiol Methods 67:64–69CrossRefGoogle Scholar
  21. 21.
    Soufleros E, Barrios ML, Bertrand A (1998) Correlation between the content of biogenic amines and other wine compounds. Am J Enol Vitic 49:266–278Google Scholar
  22. 22.
    Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of wine aroma and flavour. Am J Enol Vitic 11:139–173Google Scholar
  23. 23.
    Tracey RP, Britz TJ (1989) The effect of amino acids on malolactic fermentation by Leuconostoc oenos. J Appl Bacteriol 67:589–596Google Scholar
  24. 24.
    Pozo-BayÓn MA, Alegria E, Polo MC, Tenorio C, Martin-Alvarez PJ, Calvo De La Banda MT et al (2005) Wine volatile and amino acid composition after malolactic fermentation: effect of Oenococcus oeni and Lactobacillus plantarum starter cultures. J Agric Food Chem 53:8729–8735CrossRefGoogle Scholar
  25. 25.
    Rosa L, Isabel L, Ana RG, Carmen T, Patrocinio G, Lucía G, Pilar S (2011) Malolactic fermentation of Tempranillo wine: contribution of the lactic acid bacteria inoculation to sensory quality and chemical composition. Int J Food Sci Tech 46:2373–2381CrossRefGoogle Scholar
  26. 26.
    Hua L, Wenying Z, Hua W, Zhongchao L, Ailian W (2009) Influence of culture pH on freeze-drying viability of Oenococcus oeni and its relationship with fatty acid composition. Food Bioprod Process 87:56–61CrossRefGoogle Scholar
  27. 27.
    Harrigan WF, McCance ME (1966) Laboratory methods in microbiology. Academic Press, LondonGoogle Scholar
  28. 28.
    Klijn N, Weerkamp AH, de Vos WG (1995) Detection and characterization of lactose utilizing Lactococcus subsp. in natural ecosystems. Appl Environ Microbiol 61:788–792Google Scholar
  29. 29.
    Altschul SF, Madden TL, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation on protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  30. 30.
    Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  31. 31.
    Janssen P, Coopman R, Huys G, Swings M, Bleeker M, Vos P, Zabeau M, Kersters K (1996) Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology 142:1881–1893CrossRefGoogle Scholar
  32. 32.
    Nei M, Li WH (1979) Mathematical model for studying genetic variations in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273CrossRefGoogle Scholar
  33. 33.
    Henick-Kling T, Sandine WE, Heatherbell DA (1989) Evaluation of malolactic bacteria isolated from Oregon wine. Appl Environ Microbiol 55:2010Google Scholar
  34. 34.
    Guerrini S, Bastianini A, Blaiotta G, Granchi L, Moschetti G, Coppola S, Romano P, Vincenzini M (2003) Phenotypic and genotypic characterization of Oenococcus oeni strains isolated from Italian wines. Int J Food Microbiol 83:1–14CrossRefGoogle Scholar
  35. 35.
    Lechiancole T, Blaiotta T, Messina D, Fusco V, Villani F, Salzano G (2006) Evaluation of intra-specific diversities in Oenococcus oeni through analysis of genomic and expressed DNA. Syst Appl Microbiol 29:375–381CrossRefGoogle Scholar
  36. 36.
    Vigentini I, Picozzi C, Tirelli A, Giugni A, Foschino R (2009) Survey on indigenous Oenococcus oeni strains isolated from red wines of Valtellina, a cold climate wine-growing Italian area. Int J Food Microbiol 136:123–128CrossRefGoogle Scholar
  37. 37.
    Giammanco GM, Mammina C, Romani C, Luzzi I, Dionisi AM, Nastasi A (2007) Evaluation of a modified single-enzyme amplified fragment length polymorphism (SE-AFLP) technique for subtyping Salmonella enterica serotype Enteritidis. Res Microbiol 158:10–17CrossRefGoogle Scholar
  38. 38.
    Dimitrov ZP, Minkova S, Michaylova M (2008) Comparative evaluation of three molecular typing methods in their applicability to differentiate Lactobacillus strains with human origin. World J Microbiol Biotechnol 24:1305–1312CrossRefGoogle Scholar
  39. 39.
    Salminen S, Isolauri E, Salminen E (1996) Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek 70:347–358CrossRefGoogle Scholar
  40. 40.
    Agbo EE, Majiwa PA, Claassen HJ, te Pas MF (2002) Molecular variation of Trypanosoma brucei subspecies as revealed by AFLP fingerprinting. Parasitology 124:349–358CrossRefGoogle Scholar
  41. 41.
    Agbo EC, Duim B, Majiwa PA, Buscher P, Claassen E, te Pas MF (2003) Multiplex-endonuclease genotyping approach (MEGA): a tool for the fine-scale detection of unlinked polymorphic DNA markers. Chromosoma 111:518–524CrossRefGoogle Scholar
  42. 42.
    Delespaux V, Geysen D, Majiwa PA, Geerts S (2005) Identification of a genetic marker for isometamidium chloride resistance in Trypanosoma congolense. Int J Parasitol 35:235–243CrossRefGoogle Scholar
  43. 43.
    Gaafar A, Unzaga MJ, Cisterna R, Clavo FE, Urra E, Ayarza R, Martin G (2003) Evaluation of a modified single-enzyme amplified-fragment length polymorphism technique for fingerprinting and differentiating of Mycobacterium kansasii type I isolates. J Clin Microbiol 41:3846–3850CrossRefGoogle Scholar
  44. 44.
    Vansnick E (2004) Johne’s disease in zoo animals: development of molecular tools for the detection and characterisation of Mycobacterium avium subspecies paratuberculosis. PhD Thesis, University of GentGoogle Scholar
  45. 45.
    Moreno AM, Baccaro MR, Ferreira AJ, Pestana De Castro AF (2003) Use of single-enzyme amplified fragment length polymorphism for typing Pasteurella multocida subsp. multocida isolates from pigs. J Clin Microbiol 41:1743–1746CrossRefGoogle Scholar
  46. 46.
    Cappelloa MS, Zapparoli G, Stefania D, Logriecoc A (2010) Molecular and biochemical diversity of Oenococcus oeni strains isolated during spontaneous malolactic fermentation of Malvasia Nera wine. Syst Appl Microbiol 33:461–467CrossRefGoogle Scholar
  47. 47.
    Buteau C, Duitschaever CL, Ashton GC (1984) A study of the biogenesis of amines in a Villard noir wine. Am J Enol Vitic 35:228–236Google Scholar
  48. 48.
    Manca de Nadra MC, Farías M, Moreno-Arribas MV, Pueyo E, Polo MC (1997) Proteolytic activity of Leuconostoc oenos: effect on proteins and polypeptides from white wine. FEMS Microbiol Lett 150:135–139CrossRefGoogle Scholar
  49. 49.
    Manca de Nadra MC, Farías M, Moreno-Arribas MV, Pueyo E, Polo MC (1999) A proteolytic effect of Oenococcus oeni on the nitrogenous macromolecular fraction of red wine. FEMS Microbiol Lett 174:41–47CrossRefGoogle Scholar
  50. 50.
    Remize F, Augagneur Y, Guilloux-Benatier M, Guzzo J (2005) Effect of nitrogen limitation an nature of the feed upon Oenococcus oeni metabolism and extracellular protein production. J Appl Microbiol 98:652–661CrossRefGoogle Scholar
  51. 51.
    Pripis-Nicolau L, de Revel G, Bertrand A, Lonvaud-Funel A (2003) Methionine catabolism and production of volatile sulphur compounds by Oenococcus oeni. J Appl Microbiol 96:1176–1184CrossRefGoogle Scholar
  52. 52.
    Kennes C, Veiga MC, Naveau H, Nyns EJ (1995) Kinetics of growth of Lactobacillus plantarum with glucose, organic acids (malate, citrate, acetate) and ethanol. Biotechnol Lett 17:899–904CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.College of EnologyNorthwest A&F UniversityYanglingChina
  2. 2.Shaanxi Engineering Research Center for Viti-VinicultureYanglingChina
  3. 3.College of Life ScienceNorthwest A&F UniversityYanglingChina
  4. 4.College of Biology and Brewing EngineeringTaishan UniversityTaianChina
  5. 5.School of Agriculture, Food and WineThe University of AdelaideUrrbraeAustralia

Personalised recommendations