Advertisement

European Food Research and Technology

, Volume 237, Issue 5, pp 655–671 | Cite as

Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts

  • Joyce Kheir
  • Dominique Salameh
  • Pierre Strehaiano
  • Cédric Brandam
  • Roger Lteif
Review Paper

Abstract

Volatile phenols are aromatic compounds and one of the key molecules responsible for olfactory defects in wine. The yeast genus Brettanomyces is the only major microorganism that has the ability to covert hydroxycinnamic acids into important levels of these compounds, especially 4-ethylphenol and 4-ethylguaiacol, in red wine. When 4-ethylphenols reach concentrations greater than the sensory threshold, all wine’s organoleptic characteristics might be influenced or damaged. The aim of this literature review is to provide a better understanding of the physicochemical, biochemical, and metabolic factors that are related to the levels of p-coumaric acid and volatile phenols in wine. Then, this work summarizes the different methods used for controlling the presence of Brettanomyces in wine and the production of ethylphenols.

Keywords

Wine p-Coumaric acid 4-Ethylphenol Bioconversion Brettanomyces/Dekkera 

Notes

Conflict of interest

Joyce Kheir has received research grants from “Le Conseil de la Recherche de l’Universite Saint-Joseph, Beirut, Lebanon”. Dominique Salameh, Pierre Streihaiano, Cedric Brandam and Roger Lteif declare that they have no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Fleet GH (1993) The microorganisms of winemaking-isolation enumeration and identification. In: Fleet GH (ed) Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, pp 1–27Google Scholar
  2. 2.
    Godoy L, Martínez C, Carrasco N, Ganga MA (2008) Purification and characterization of a p-coumarate decarboxylase and a vinylphenol reductase from Brettanomyces bruxellensis. Int J Food Microbiol 127:6–11Google Scholar
  3. 3.
    Rodrigues N, Gonçalves G, Pereira-da-Silva S, Malfeito-Ferreira M, Loureiro V (2001) Development and use of a new medium to detect yeasts of the genera Dekkera/Brettanomyces. J Appl Microbiol 90:588–599Google Scholar
  4. 4.
    Dias L, Dias S, Sancho T, Stender H, Querol A, Malfeito-Ferreira M, Loureiro V (2003) Identification of yeasts isolated from wine-related environments and capable of producing 4-ethylphenol. Food Microbiol 20:567–574Google Scholar
  5. 5.
    Caboni P, Sarais G, Cabras M, Angioni A (2007) Determination of 4-ethylphenol and 4-ethylguaiacol in wines by LC-MS-MS and HPLC-DAD-Fluorescence. J Agr Food Chem 55:7288–7293Google Scholar
  6. 6.
    Chatonnet P, Boidron JN, Pons M (1990) Elevage des vins rouges en fûts de chêne: évolution de certains composés volatils et de leur impact arômatique. Sci Aliment 10:565–587Google Scholar
  7. 7.
    Snowdon EM, Bowyer MC, Grbin PR, Bowyer PK (2006) Mousy Off-Flavor: a Review. J Agr Food Chem 54:6465–6474Google Scholar
  8. 8.
    Silva P, Cardoso H, Geros H (2004) Studies on the wine spoilage capacity of Brettanomyces/Dekkera spp. Am J Enol Vitic 55:65–72Google Scholar
  9. 9.
    Van Nedervelde L, Debourg A (1995) Properties of Belgian acid beers and their microflora - Part 2: biochemical properties of Brettanomyces yeasts. Cerevesia 20:43–48Google Scholar
  10. 10.
    Medawar W (2003) Etude physiologique et cinétique des levures du genre Brettanomyces dans un contexte oenologique. Thèse de doctorat de l’Institut national polytechnique de Toulouse, France et de l’Université Saint Joseph de Beyrouth, LibanGoogle Scholar
  11. 11.
    Aguilar Uscanga MG, Delia ML, Strehaiano P (2000) Nutritional requirements of Brettanomyces bruxellensis: growth and physiology in batch and chemostat cultures. Canadian J Microbiol 46:1046–1050Google Scholar
  12. 12.
    Millet V, Lonvaud-Funel A (2000) The viable but non-culturable state of wine micro-organisms during storage. Lett Appl Microbiol 30:136–141Google Scholar
  13. 13.
    Benito S, Palomero F, Morata A, Calderón F, Suárez-Lepe JA (2009) A method for estimating Dekkera/Brettanomyces populations in wines. J Appl Microbiol 106:1743–1751Google Scholar
  14. 14.
    Loureiro V, Malfeito-Ferreira M (2006) Spoilage activities of Dekkera/Brettanomyces spp. In: Blackburn CW (ed) Food spoilage microorganisms. Chapter 13. Woodhead Publishers, Cambridge, pp 354-398Google Scholar
  15. 15.
    Conterno L, Joseph CML, Arvik TJ, Henick-Kling T, Bisson LF (2006) Genetic and physiological characterization of brettanomyces bruxellensis strains isolated from wines. Am J Enol Vitic 57:139–147Google Scholar
  16. 16.
    Barbin P (2006) Contrôle et éléments de la contamination par la levure Brettanomyces au cours du procédé de vinification en rouge. Thèse de doctorat de l’Institut national polytechnique de Toulouse, FranceGoogle Scholar
  17. 17.
    Suárez R, Suárez-Lepe JA, Morata A, Calderón F (2007) The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: a review. Food Chem 102:10–21Google Scholar
  18. 18.
    Renouf V, Lonvaud-Funel A (2006) Development of an enrichment medium to detect Dekkera/Brettanomyces bruxellensis, a spoilage wine yeast, on the surface of the grape berries. Microbiol Res 162:154–167Google Scholar
  19. 19.
    Ciani M, Maccarelli F, Fatichenti F (2003) Growth and fermentation behaviour of Brettanomyces/Dekkera yeasts under different conditions of aerobiosis. World J Microb Biot 19:419–422Google Scholar
  20. 20.
    Ciani M, Ferraro L (1997) Role of oxygen on acetic acid production by Brettanomyces/Dekkera in winemaking. J Sci Food Agr 75:489–495Google Scholar
  21. 21.
    Du Toit WJ, Pretorius IS, Lonvaud-Funel A (2005) The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine. J Appl Microbiol 98:862–871Google Scholar
  22. 22.
    Barata A, Pagliara D, Piccininno T, Tarantino F, Ciardulli W, Malfeito-Ferreira M, Loureiro V (2008) The effect of sugar concentration and temperature on growth and volatile phenol production by Dekkera bruxellensis in wine. FEMS Yeast Res 8:1097–1102Google Scholar
  23. 23.
    Barata A, Caldeira J, Botelheiro R, Pagliara D, Malfeito-Ferreira M, Loureiro V (2008) Survival patterns of Dekkera bruxellensis in wines and inhibitory effect of sulphur dioxide. Int J Food Microbiol 121:7Google Scholar
  24. 24.
    Jin ZM, He JJ, Bi HQ, Cui XY, Duan CQ (2009) Phenolic compound profiles in berry skins from nine red wine grape cultivars in Northwest China. Molecules 14:4922–4935Google Scholar
  25. 25.
    Castillo-Sánchez JX, García-Falcón MS, Garrido J, Martínez-Carballo E, Martins-Dias LR, Mejuto XC (2008) Phenolic compounds and colour stability of Vinhão wines: influence of wine-making protocol and fining agents. Food Chem 106:18–26Google Scholar
  26. 26.
    Basha SM, Musingo M, Colova VS (2004) Compositional differences in the phenolics compounds of muscadine and bunch grape wines. Afr J Biotechnol 3:523–528Google Scholar
  27. 27.
    Rentzsch M, Wilkens A, Winterhalter P (2009) Non-flavonoid phenolic compounds. In: Moreno-Arribas MV, Polo C (eds) Wine chemistry and biochemistry. Springer, New York, pp 509–527Google Scholar
  28. 28.
    Gerbaux V, Vincent B, Bertrand A (2002) Influence of maceration temperature and enzymes on the content of volatile phenols in Pinot noir wines. Am J Enol Vitic 53:131–137Google Scholar
  29. 29.
    Edlin DAN, Narbad A, Dickinson JR, Lloyd D (1995) The biotransformation of simple phenolic compounds by Brettanomyces anomalus. FEMS Microbiol Lett 125:311–315Google Scholar
  30. 30.
    Heresztyn T (1986) Metabolism of volatile phenolic compounds from hydroxycinnamic acids by Brettanomyces yeast. Arch Microbiol 146:96–98Google Scholar
  31. 31.
    Chatonnet P, Dubourdieu D, Boidron JN, Pons M (1992) The origin of ethylphenols in wines. J Sci Food Agr 60:165–178Google Scholar
  32. 32.
    Harris V, Ford C, Jiranek V, Grbin P (2009) Survey of enzyme activity responsible for phenolic off-flavour production by Dekkera and Brettanomyces yeast. Appl Microbiol Biot 81:1117–1127Google Scholar
  33. 33.
    Edlin D (1997) The production of phenolic flavour compounds by yeasts and fungi. PhD thesis, University of Cardiff, United KingdomGoogle Scholar
  34. 34.
    K O’Toole D, Kun Lee Y (2006) Food involving yeast and ethanol fermentation. In: Kun Lee Y (ed) Microbial biotechnology: principles and applications. Chapter 9. World Scientific Publishing Co. Pte. Ltd, SingaporeGoogle Scholar
  35. 35.
    Chatonnet P, Dubourdieu D, Boidron JN (1995) The influence of Brettanomyces/Dekkera sp. yeasts and lactic acid bacteria on the ethylphenol content of red wines. Am J Enol Vitic 46:463–468Google Scholar
  36. 36.
    Oelofse A, Pretorius IS, Du Toit M (2008) Significance of Brettanomyces and Dekkera during winemaking: a synoptic review. S Afr J Enol Vitic 29:128–144Google Scholar
  37. 37.
    Vanbeneden N (2007) Release of hydroxycinnamic acids and formation of flavour-active volatile phenols during the beer production process. PhD thesis, Katholieke Universiteit Leuven, BelgiumGoogle Scholar
  38. 38.
    Barata A, Nobre A, Correia P, Malfeito-Ferreira M, Loureiro V (2006) Growth and 4-ethylphenol production by the yeast Pichia guilliermondii in grape juices. Am J Enol Vitic 57:133–138Google Scholar
  39. 39.
    Gerbaux V, Briffox C, Vincent B (2003) Optimisation de la macération finale à chaud, intérêt d’un enzymage et d’une macération sous chapeau immergé pour la vinification du pinot noir. Revue Française d’Œnologie 201:16–21Google Scholar
  40. 40.
    Fugelsang KC, Zoecklein BW (2003) Population dynamics and effects of Brettanomyces bruxellensis strains on Pinot noir (Vitis vinifera L.) wines. Am J Enol Vitic 54:294–300Google Scholar
  41. 41.
    Shinohara T, Kubodera S, Yanagida F (2000) Distribution of phenolic yeasts and production of phenolic off-flavors in wine fermentation. J Biosci Bioeng 90:90–97Google Scholar
  42. 42.
    Ho P, Hogg TA, Silva MCM (1999) Application of a liquid chromatographic method for the determination of phenolic compounds and furans in fortified wines. Food Chem 64:115–122Google Scholar
  43. 43.
    Avar P, Nikfardjam MSP, Kusagi-Mate S, Montsko G, Szabo Z, Boddi K, Ohmacht R, Mark L (2007) Investigation of phenolic components of Hungarian wines. Int J Mol Sci 8:1028–1038Google Scholar
  44. 44.
    Pöllnitz AP, Pardon KH, Sefton MA (2000) Quantitative analysis of 4-ethylphenol and 4-ethylguaiacol in red wine. J Chromatogr A 874:101–109Google Scholar
  45. 45.
    Goldberg DM, Tsang E, Karumanchiri A, Soleas GJ (1998) Quercetin and p-coumaric acid concentrations in commercial wines. Am J Enol Vitic 49:142–151Google Scholar
  46. 46.
    Asselin C, Pages J, Morlat R (1987) Résultats de 3 années d’étude concernant la mise en évidence de l’effet terroir sur les caractéristiques des vins à l’aide de l’analyse sensorielle. 3ème symposium international sur la physiologie de la vigne. Bulletin de l’OIV, pp 316-323Google Scholar
  47. 47.
    Falcetti M, Asselin C (1996) Les effets du terroir ou l’expression des potentiels à valoriser. In: Asselin C MJ, Sapis JC, Flanzy C (eds) 1er Colloque international « Les terroirs viticoles » , URVV Angers, ISVV Montpellier, pp 253-258Google Scholar
  48. 48.
    Ducruet V, Flanzy C, Bourzeix M, Chambroy Y (1983) Les constituants volatils des vins jeunes de macération carbonique. Sci Aliment 3:413–426Google Scholar
  49. 49.
    Etievant PX, Issanchou SN, Marie S, Ducruet V, Flanzy C (1989) Sensory impact of volatile phenols on red wines aroma: influence of carbonic maceration and time of storage. Sci Aliment 9:19–33Google Scholar
  50. 50.
    Goldsworthy SA (1993) Pre-fermentation maceration of Pinot noir wine. M Applied Science Thesis. Lincoln University, New ZealandGoogle Scholar
  51. 51.
    Heatherbell D, Dicey M, Goldsworthy S, Vanhanen L (1997) Effect of prefermentation cold maceration on the composition, color and flavor of Pinot noir wine. In: Henick-Kling T (ed) Proceedings of the 4th international symposium on cool climate enology and viticulture. USA, New York, pp 10–17Google Scholar
  52. 52.
    Koyoma K, Goto-Yamamoto N, Hashizume K (2007) Influence of maceration temperature in red wine vinification on extraction of phenolics from berry skins and seeds of grape (Vitis vinifera). Biosci Biotech Bioch 71:958–967Google Scholar
  53. 53.
    Gerbaux V (1993) Etude de quelques conditions de cuvaison susceptible d’augmenter la composition polyphénolique des vins de Pinot noir. Revue des Œnologues 69:15–18Google Scholar
  54. 54.
    Nagel CW, Baranowski JD, Wulf LW, Powers JR (1979) The hydroxycinnamic acid tartaric acid ester content of musts and grape varieties grown in the Pacific Northwest. Am J Enol Vitic 30:198–201Google Scholar
  55. 55.
    Salameh D, Brandam C, Medawar W, Lteif R, Strehaiano P (2008) Highlight on the problems generated by p-coumaric acid analysis in wine fermentations. Food Chem 107:1661–1667Google Scholar
  56. 56.
    Cabrita MJ, Palma V, Patao R, Freitas MC (2012) Conversion of hydroxycinnamic acids into volatile phenols in a synthetic medium and in red wine by Dekkera bruxellensis. Ciênc Tecnol Aliment 32:106–111Google Scholar
  57. 57.
    Sacchi KL, Bisson LF, Adams DO (2005) A review of the effect of winemaking techniques on phenolic extraction in red wines. Am J Enol Vitic 56:197–206Google Scholar
  58. 58.
    Vasserot Y, Caillet S, Maujean A (1997) Study of anthocyanin adsorption by yeast lees. Effect of some physicochemical parameters. Am J Enol Vitic 48:433–437Google Scholar
  59. 59.
    Delcroix A, Gunata Z, Sapis J-C, Salmon J-M, Bayonove C (1994) Glycosidase activities of three enological yeast strains during winemaking: effect on the terpenol content of Muscat wine. Am J Enol Vitic 45:291–296Google Scholar
  60. 60.
    Sponholz WR (1997) L’attività enzimatica dei livetti e la stabilità del colore rosso dei vini. Vigne vini 24:34–36Google Scholar
  61. 61.
    Monagas M, Nunez V, Bartolome B, Gomez-Cordoves C (2003) Anthocyanin-derived pigments in Graciano, Tempranillo, and Cabernet Sauvignon wines produced in Spain. Am J Enol Vitic 54:163–169Google Scholar
  62. 62.
    Morata A, Gómez-Cordovés MC, Colomo B, Suárez JA (2005) Cell wall anthocyanin adsorption by different Saccharomyces strains during the fermentation of Vitis vinifera L. cv Graciano grapes. Eur Food Res Technol 220:341–346Google Scholar
  63. 63.
    Dallas C, Ricardo-da-Silva JM, Laureano O (1996) Interactions of oligomeric procyanidins in model wine solutions containing malvidin-3-glucoside and acetaldehyde. J Sci Food Agr 70:493–500Google Scholar
  64. 64.
    Morata A, Gómez-Cordovés MC, Colomo B, Suárez JA (2003) Pyruvic acid and acetaldehyde production by different strains of Saccharomyces cerevisiae: relationship with Vitisin A and B formation in red wines. J Agr Food Chem 51:7402–7409Google Scholar
  65. 65.
    Bakker J, Timberlake CF (1997) Isolation, identification, and characterization of new color-stable anthocyanins occurring in some red wines. J Agr Food Chem 45:35–43Google Scholar
  66. 66.
    Vivar-Quintana AM, Santos-Buelga C, Rivas-Gonzalo JC (2002) Anthocyanin-derived pigments and colour of red wines. Anal Chim Acta 458:147–155Google Scholar
  67. 67.
    Gómez-Plaza E, Gil-Muňoz R, López-Roca JM, De la Hera-Orts ML, Martínez-Cultíllas A (2000) Effect of the addition of bentonite and polyvinylpolypyrrolidone on the colour and long-term stability of red wines. J Wine Res 11:223–231Google Scholar
  68. 68.
    Francis FJ (1992) A new group of food colorants. Trends Food Sci Tech 3:27–30Google Scholar
  69. 69.
    Liao H, Cai Y, Haslam E (1992) Polyphenol interactions. Anthocyanins: co-pigmentation and colour changes in red wines. J Sci Food Agr 59:299–305Google Scholar
  70. 70.
    Baublis A, Spomer ART, Berber-Jiménez MD (1994) Anthocyanin pigments: comparison of extract stability. J Food Sci 59:1219–1221Google Scholar
  71. 71.
    Dugelay I, Baumes R, Gunata Z, Razungles A, Bayonove C (1995) Evolution de l’arôme au cours de la conservation du vin : formation de 4-(1-éthoxyéthyl)-phénol et 4-(1-éthoxyéthyl)-gaïacol. Sci Aliment 15:423–433Google Scholar
  72. 72.
    Eskin NAM (1990) Biochemistry of food processing: browning reactions in foods. In: Eskin NAM (ed) Biochemistry of Foods. Academic Press, LondonGoogle Scholar
  73. 73.
    Macheix JJ, Sapis JC, Fleuriet A, Lee CY (1991) Phenolic compounds and polyphenoloxidase in relation to browning in grapes and wines. Crit Rev Food Sci 30:441–486Google Scholar
  74. 74.
    Singleton VL (1987) Oxygen with phenols and related reactions in musts, wines, and model systems: observations and practical implications. Am J Enol Vitic 38:69–77Google Scholar
  75. 75.
    Cheynier V, Fulcrand H (1998) Oxydation des polyphénols dans le moût et les vins. In: Flanzy C (ed) Œnologie-fondements scientifiques et technologiques. Technique et Documentation, Lavoisier, pp 580–594Google Scholar
  76. 76.
    Giusti MMn, Rodríguez-Saona LE, Wrolstad RE (1999) Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. J Agr Food Chem 47:4631–4637Google Scholar
  77. 77.
    Mayer AM (1986) Polyphenol oxidases in plants-recent progress. Phytochemistry 26:11–20Google Scholar
  78. 78.
    Okuda T, Kimura Y, Yoshida T, Hatano T, Okuda H, Arichi S (1983) Studies on the activities of tannins and related compounds from medicinal plants and drugs. I. Inhibitory effects on lipid peroxidation in mitochondria and microsomes of liver. Chem Pharm Bull 31:1625–1631Google Scholar
  79. 79.
    Guyot S, Vercauteren J, Cheynier V (1996) Structural determination of colourless and yellow dimers resulting from (+)-catechin coupling catalysed by grape polyphenoloxidase. Phytochemistry 42:1279–1288Google Scholar
  80. 80.
    Dugelay I, Gunata Z, Sapis JC, Baumes R, Bayonove C (1993) Role of cinnamoyl esterase activities from enzyme preparations on the formation of volatile phenols during winemaking. J Agr Food Chem 41:2092–2096Google Scholar
  81. 81.
    Rayne S, Eggers N (2007) Volatile phenols from Brettanomyces in barreled red wines: are they stable? And where do they reside? Aust NZ Grapegrow Winemak 522:64–69Google Scholar
  82. 82.
    Di Stefano R (1985) Gli etil fenoli nei vini. Vigne vini 5:35–38Google Scholar
  83. 83.
    Dubois P, Dekimpe J (1982) Constituants volatils odorants des vins de Bourgogne élevés en fûts de chêne neufs. Revue Française d’Œnologie 88:51–53Google Scholar
  84. 84.
    Dubois P (1989) Apports du fut de chêne neuf à l’arôme des vins. Revue Française d’Œnologie 120:19–24Google Scholar
  85. 85.
    Kadim D, Mannheim CH (1999) Kinetics of phenolic extraction during aging of model wine solution and white wine in oak barrels. Am J Enol Vitic 50:33–39Google Scholar
  86. 86.
    Garde-Cerdán T, Ancín-Azpilicueta C (2006) Effect of oak barrel type on the volatile composition of wine: storage time optimization. LWT Food Sci Technol 39:199–205Google Scholar
  87. 87.
    Vivas N, Glories Y (1993) Les phénomènes d’oxydo-réduction liés à l’élevage en barrique des vins rouges: aspect technologique. Revue Française d’Œnologie 142:33–38Google Scholar
  88. 88.
    Peyron D, Boukhrta M, Feuillat M (1994) Evolution de la composition phénolique des vins rouges en relation avec la qualité des bois de chêne de tonnellerie. Revue Française d’Œnologie 146:5–10Google Scholar
  89. 89.
    Garde-Cerdán T, Ancín-Azpilicueta C (2006) Review of quality factors on wine ageing in oak barrels. Trends Food Sci Tech 17:438–447Google Scholar
  90. 90.
    Boidron JN, Chatonnet P, Pons M (1988) Influence du bois sur certaines substances odorantes des vins. Connaiss Vigne Vin 22:275–294Google Scholar
  91. 91.
    Garde-Cerdán T, Torrea-Goñi D, Ancín-Azpilicueta C (2004) Accumulation of volatile compounds during ageing of two red wines with different composition. J Food Eng 65:349–356Google Scholar
  92. 92.
    Pérez-Prieto LJ, López-Roca JM, Martínez-Cutillas A, Pardo-Mínguez F, Gómez-Plaza E (2003) Extraction and formation dynamic of oak-related volatile compounds from different volume barrels to wine and their behavior during bottle storage. J Agr Food Chem 51:5444–5449Google Scholar
  93. 93.
    Garde-Cerdán T, Rodríguez-Mozaz S, Ancín-Azpilicueta C (2002) Volatile composition of aged wine in used barrels of French oak and of American oak. Food Res Int 35:603–610Google Scholar
  94. 94.
    Matejícek D, Mikes O, Klejdus B, Sterbová D, Kubán V (2005) Changes in contents of phenolic compounds during maturing of barrique red wines. Food Chem 90:791–800Google Scholar
  95. 95.
    Dias L, Pereira-da-Silva S, Tavares M, Malfeito-Ferreira M, Loureiro V (2003) Factors affecting the production of 4-ethylphenol by the yeast Dekkera bruxellensis in enological conditions. Food Microbiol 20:377–384Google Scholar
  96. 96.
    Gerbaux V, Jeudy S, Monamy C (2000) Étude des phénols volatils dans les vins de Pinot noir en Bourgogne. Bulletin de l’OIV 73:581–599Google Scholar
  97. 97.
    Renouf V, Falcou M, Miot-Sertier C, Perello MC, De Revel G, Lonvaud-Funel A (2006) Interactions between Brettanomyces bruxellensis and other yeast species during the initial stages of winemaking. J Appl Microbiol 100:1208–1219Google Scholar
  98. 98.
    Valentão P, Seabra RM, Lopes G, Silva LR, Martins V, Trujillo ME, Velázquez E, Andrade PB (2007) Influence of Dekkera bruxellensis on the contents of anthocyanins, organic acids and volatile phenols of Dão red wine. Food Chem 100:64–70Google Scholar
  99. 99.
    Oelofse A, Lonvaud-Funel A, du Toit M (2009) Molecular identification of Brettanomyces bruxellensis strains isolated from red wines and volatile phenol production. Food Microbiol 26:377–385Google Scholar
  100. 100.
    Zoekcklein BW (2000) Brettanomyces aroma/flavor research. Vinter’s Corner. 15(1). http://www.fst.vt.edu/Zoecklein/Janfeb00.html
  101. 101.
    Baranowski JD, Davidson PM, Nagel CW, Branen AL (1980) Inhibition of Saccharomyces cerevisiae by naturally occurring hydroxycinnamates. J Food Sci 45:592–594Google Scholar
  102. 102.
    Goodey AR, Tubb RS (1982) Genetic and biochemical analysis of the ability of Saccharomyces cerevisiae to decarboxylate cinnamic acids. J Gen Microbiol 128:2615–2620Google Scholar
  103. 103.
    Dubourdieu D, Darriet P, Chatonnet P (1989) Intervention of enzymatic systems of Saccharomyces cerevisiae on some precursors of grape aroma. XIIth International symposium specialized on yeast Louvain, BelgiumGoogle Scholar
  104. 104.
    Harris V, Ford C, Jiranek V, Grbin P (2008) Dekkera and Brettanomyces growth and utilisation of hydroxycinnamic acids in synthetic media. Appl Microbiol Biot 78:997–1006Google Scholar
  105. 105.
    Morata A, Gómez-Cordovés MC, Colomo B, Suárez JA (2006) Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species of Saccharomyces. Int J Food Microbiol 106:123–129Google Scholar
  106. 106.
    Malfeito-Ferreira M, Rodrigues N, Loureiro V (2001) The influence of oxygen on the ‘‘horse sweat taint’’ in red wines. Italian Food Bev Technol 24:34–38Google Scholar
  107. 107.
    Benito S, Palomero F, Morata A, Calderón F, Suárez-Lepe JA (2009) Factors affecting the hydroxycinnamate decarboxylase/vinylphenol reductase activity of Dekkera/Brettanomyces: application for Dekkera/Brettanomyces control in red wine making. J Food Sci 74:M15–M22Google Scholar
  108. 108.
    Chassagne D, Charpentier C, Guilloux-Benatier M, Alexandre H, Feuillat M (2001) Influence de l’autolyse des levures apres fermentation sur le développement de Brettanomyces-Dekkera dans le vin. J Int Sci Vigne Vin 35:157–164Google Scholar
  109. 109.
    Gerós H, Azevedo MM, Cássio F (2000) Biochemical studies on the production of acetic acid by the yeast Dekkera anomala. Food Technol Biotech 38:59–62Google Scholar
  110. 110.
    Baumes R, Cordonnier R, Nitz S, Drawert F (1986) Identification and determination of volatile constituents in wines from different vine cultivars. J Sci Food Agr 37:927–943Google Scholar
  111. 111.
    Schreier P, Drawert P, Abraham KO (1980) Identification and determination of volatile constituents in Burgundy Pinot noir. LWT-Food Sci Technol 13:318–321Google Scholar
  112. 112.
    Etievant PX (1981) Volatile phenol determination in wine. J Agr Food Chem 29:65–67Google Scholar
  113. 113.
    Chatonnet P, Dubourdieu D, Boidron JN, Pons M (1992) The origin of ethylphenols in wines. J Sci Food Agr 60:165–178Google Scholar
  114. 114.
    Edlin DAN, Narbad A, Gasson MJ, Dickinson JR, Lloyd D (1998) Purification and characterization of hydroxycinnamate decarboxylase from Brettanomyces anomalus. Enzyme Microb Tech 22:232–239Google Scholar
  115. 115.
    Chatonnet P, Dubourdieu D, JN Boidron, Lavigne V (1993) Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. J Sci Food Agr 62:191–202Google Scholar
  116. 116.
    Barthelmebs L, Divies C, Cavin J-F (2000) Knockout of the p-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism. Appl Environ Microb 66:3368–3375Google Scholar
  117. 117.
    Godoy L, Garrido D, Martínez C, Saavedra J, Combina M, Ganga MA (2009) Study of the coumarate decarboxylase and vinylphenol reductase activities of Dekkera bruxellensis (anamorph Brettanomyces bruxellensis) isolates. Lett Appl Microbiol 48:452–457Google Scholar
  118. 118.
    Tchobanov I, Gal L, Guilloux-Benatier M, Remize F, Nardi T, Guzzo J, Serpaggi V, Alexandre H (2008) Partial vinylphenol reductase purification and characterization from Brettanomyces bruxellensis. FEMS Microbiol Lett 284:213–217Google Scholar
  119. 119.
    Tchobanov I (2007) Sélection de souches de levures Bulgares. Purification partielle et caractérisation de la vinylphénol réductase chez Brettanomyces. Thèse de doctorat de l’universite de Bourgogne, FranceGoogle Scholar
  120. 120.
    Froudière I, Larue F (1988) Conditions de survie de Brettanomyces (Dekkera) dans le moût de raisin et le vin. Connaiss Vigne Vin 2:296–303Google Scholar
  121. 121.
    Boulton RV, Singleton L, Bisson R, Kunke E (1996) The maturation and ageing of wine. Principles and practices of winemaking. Chapman and Hall, New York, pp 382–426Google Scholar
  122. 122.
    Smith CR (1996) Studies of sulfur dioxide toxicity for two wine yeasts. University of California, DavisGoogle Scholar
  123. 123.
    Izquierdo-Cañas PM, García-Romero E, Huertas-Nebreda B, Gómez-Alonso S (2012) Colloidal silver complex as an alternative to sulphur dioxide in winemaking. Food Control 23:73–81Google Scholar
  124. 124.
    McMurrough I, Madigan D, Donnelly D, Hurley J, Doyle AM, Hennigan G, McNulty N (1996) Control of ferulic acid and 4-vinyl guaiacol in brewing. J Inst Brewing 102:327–332Google Scholar
  125. 125.
    Sims CA, Eastridge JS, Bates RP (1995) Changes in phenols, color, and sensory characteristics of Muscadine wines by pre- and post-fermentation additions of PVPP, casein, and gelatin. Am J Enol Vitic 46:155–158Google Scholar
  126. 126.
    Donovan J, McCauley J, Tobella N, Waterhouse AL (1999) Effects of small-scale fining on the phenolic composition and antioxidant activity of Merlot wine. In: WaterHouse AL (ed) Wine Chemistry. ACS Symposium Series, Washington DC, pp 142–155Google Scholar
  127. 127.
    Lisanti MT, Piombino P, Gambuti A, Genovese A, Moio L (2008) Oenological treatments for the removal of geosmin, responsible for earthy off-flavour, in wine. XXXIst World Congress of Vine and Wine. Verona, Italy, pp 15–20Google Scholar
  128. 128.
    Guzzon R, Nardin T, Micheletti O, Nicolini G, Larcher R (2013) Antimicrobial activity of ozone. Effectiveness against the main wine spoilage microorganisms and evaluation of impact on simple phenols in wine. Aust J Grape Wine Res doi. doi: 10.1111/ajgw.12018 Google Scholar
  129. 129.
    Cantacuzene NO, Dormedy ES, Smilanick JL, Fugelsang KC, Wample RL, et al. (2003) Treating Brettanomyces in oak cubes with gaseous and aqueous ozone. ASEV 54th annual meeting Reno, NevadaGoogle Scholar
  130. 130.
    Coggan M (2003) Ozone in wineries. http://www.ciprocess.co.uk/pdfs/Ozone_In_Wineries.pdf
  131. 131.
    Renouf V, Strehaiano P, Lonvaud-Funel A (2008) Effectiveness of dimethyldicarbonate to prevent Brettanomyces bruxellensis growth in wine. Food Control 19:208–216Google Scholar
  132. 132.
    Costa A, Barata A, Malfeito-Ferreira M, Loureiro V (2008) Evaluation of the inhibitory effect of dimethyl dicarbonate (DMDC) against wine microorganisms. Food Microbiol 25:422–427Google Scholar
  133. 133.
    Gómez-Rivas L, Escudero-Abarca B, Aguilar-Uscanga MG, Hayward-Jones P, Mendoza P, Ramírez M (2004) Selective antimicrobial action of chitosan against spoilage yeasts in mixed culture fermentations. J Ind Microbiol Biotechnol 31:16–22Google Scholar
  134. 134.
    Bornet A, Gautier S, Teissedre PL (2008) Elimination des goûts terreux (la géosmine) et des Brettanomyces par l’utilisation d’un biopolymère fongique: le chitosane. The XXXI World Congress of Vine and Wine, VeronaGoogle Scholar
  135. 135.
    Larcher R, Puecher C, Rohregger S, Malacarne M, Nicolini G (2012) 4-Ethylphenol and 4-ethylguaiacol depletion in wine using esterified cellulose. Food Chem 132:2126–2130Google Scholar
  136. 136.
    Santos A, Navascués E, Bravo E, Marquina D (2011) Ustilago maydis killer toxin as a new tool for the biocontrol of the wine spoilage yeast Brettanomyces bruxellensis. Int J Food Microbiol 145:147–154Google Scholar
  137. 137.
    Enrique M, Marcos JF, Yuste M, Martínez M, Vallés S, Manzanares P (2008) Inhibition of the wine spoilage yeast Dekkera bruxellensis by bovine lactoferrin-derived peptides. Int J Food Microbiol 127:229–234Google Scholar
  138. 138.
    Benito S, Palomero F, Morata A, Uthurry C, Suárez-Lepe JA (2009) Minimization of ethylphenol precursors in red wines via the formation of pyranoanthocyanins by selected yeasts. Int J Food Microbiol 132:145–152Google Scholar
  139. 139.
    Morata A, Vejarano R, Ridolfi G, Benito S, Palomero F, Uthurry C, Tesfaye W, González C, Suárez-Lepe JA (2013) Reduction of 4-ethylphenol production in red wines using HCDC + yeasts and cinnamyl esterases. Enzyme Microb Technol 52:99–104Google Scholar
  140. 140.
    Santos A, San Mauro M, Bravo E, Marquina D (2009) PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis. Microbiology 155:624–634Google Scholar
  141. 141.
    Chassagne D, Guilloux-Benatier M, Alexandre H, Voilley A (2005) Sorption of wine volatile phenols by yeast lees. Food Chem 91:39–44Google Scholar
  142. 142.
    Haslam E, Lilley TH, Warminski E, Liao H, Cai Y, Martin R, Gaffney-Simon H, Goulding-Paul N, Luck G (1992) Polyphenol Complexation. Phenolic Compounds in Food and Their Effects on Health I: American Chemical Society, Chapter 2:8–50Google Scholar
  143. 143.
    Kawamoto H, Nakatsubo F (1997) Effects of environmental factors on two-stage tannin-protein co-precipitation. Phytochemistry 46:479–483Google Scholar
  144. 144.
    Salmon JM, Fornairon-Bonnefond C, Mazauric JP (2002) Interactions between wine lees and polyphenols: influence on oxygen consumption capacity during simulation of wine aging. J Food Sci 67:1604–1609Google Scholar
  145. 145.
    Caridi A, Sidari R, Solieri L, Cufari A, Giudici P (2007) Wine colour adsorption phenotype: an inheritable quantitative trait loci of yeasts. J Appl Microbiol 103:735–742Google Scholar
  146. 146.
    Couto JA, Barbosa A, Hogg T (2005) A simple cultural method for the presumptive detection of the yeasts Brettanomyces/Dekkera in wines. Lett Appl Microbiol 41:505–510Google Scholar
  147. 147.
    Calderón F, Morata A, Uthurry C, Suárez JA (2004) Aplicaciones de la ultrafiltración en la industria enológica. Últimos avances tecnológicos. Tecnología del Vino 16:49–54Google Scholar
  148. 148.
    Umiker NL, Descenzo RA, Lee J, Edwards CG (2012) Removal of Brettanomyces bruxellensis from red wine using membrane filtration. J Food Process Preserv. doi: 10.1111/j.1745-4549.2012.00702.x Google Scholar
  149. 149.
    Vuchot P, Favre E, Noilet P, Barnavon L (2007) Le traitement des vins phénolés: aspects curatifs. Proceedings XXXth OIV World Congress, BudapestGoogle Scholar
  150. 150.
    Palomero F, Ntanos K, Morata A, Benito S, Suárez-Lepe J (2011) Reduction of wine 4-ethylphenol concentration using lyophilised yeast as a bioadsorbent: influence on anthocyanin content and chromatic variables. Eur Food Res Technol 232:971–977Google Scholar
  151. 151.
    Puértolas E, López N, Condón S, Raso J, Álvarez I (2009) Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int J Food Microbiol 130:49–55Google Scholar
  152. 152.
    Lustrato G, Vigentini I, De Leonardis A, Alfano G, Tirelli A, Foschino R, Ranalli G (2010) Inactivation of wine spoilage yeasts Dekkera bruxellensis using low electric current treatment (LEC). J ApplMicrobiol 109:594–604Google Scholar
  153. 153.
    Schmid F, Grbin P, Yap A, Jiranek V (2011) Relative efficacy of high-pressure hot water and high-power ultrasonics for wine oak barrel sanitization. Am J Enol Vitic 62:519–526Google Scholar
  154. 154.
    Morata A, Benito S, González MC, Palomero F, Tesfaye W, Suárez-Lepe JA (2012) Cold pasteurisation of red wines with high hydrostatic pressure to control Dekkera/Brettanomyces: effect on both aromatic and chromatic quality of wine. Eur Food Res Technol 235:147–154Google Scholar
  155. 155.
    González-Arenzana L, Santamaría P, López R, Garijo P, Gutiérrez AR, Garde-Cerdán T, López-Alfaro I (2013) Microwave technology as a new tool to improve microbiological control of oak barrels: a preliminary study. Food Control 30:536–539Google Scholar
  156. 156.
    Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006) Effect of the type of barrel on the development of red wine. In John Wiley & Sons (eds) Handbook of enology. The chemistry of wine stabilization and treatments, Vol. 2. Chichester, EnglandGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joyce Kheir
    • 1
    • 2
    • 3
  • Dominique Salameh
    • 3
  • Pierre Strehaiano
    • 1
    • 2
  • Cédric Brandam
    • 1
    • 2
  • Roger Lteif
    • 3
  1. 1.Laboratoire de Génie ChimiqueUniversité de Toulouse, INPT, UPSToulouseFrance
  2. 2.Laboratoire de Génie ChimiqueCNRSToulouseFrance
  3. 3.Faculté des SciencesUniversité Saint-JosephBeirutLebanon

Personalised recommendations