European Food Research and Technology

, Volume 236, Issue 6, pp 931–942 | Cite as

Dark chocolate’s compositional effects revealed by oscillatory rheology

  • Kasper van der Vaart
  • Frédéric Depypere
  • Veerle De Graef
  • Peter Schall
  • Abdoulaye Fall
  • Daniel Bonn
  • Koen Dewettinck
Original Paper

Abstract

In this study, two types of oscillatory shear rheology are applied on dark chocolate with varying volume fraction, particle size distribution, and soy lecithin concentration. The first, a conventional strain sweep, allows for the separation of the elastic and viscous properties during the yielding. The second, a constant strain rate sweep, where the strain rate amplitude is fixed as the frequency is varied, is analyzed to obtain Lissajous curves, dissipated energy, and higher order nonlinear contributions. It is shown that chocolate exhibits complex nonlinear behavior, namely shear thinning, shear thickening, and strain stiffening. The effects on this behavior related to volume fraction, particle size distribution, and lecithin concentration are investigated, and comparison with simple monodisperse hard-sphere suspensions is made.

Keywords

Oscillatory rheology Chocolate Yielding Viscoelastic properties Flow behavior LAOS Stress decomposition 

References

  1. 1.
    Beckett ST (2009) Industrial chocolate manufacturing and use, 4th edn. Blackwell Science, OxfordGoogle Scholar
  2. 2.
    Beckett ST (2000) The science of chocolate. RSC Paperbacks, Royal Society of Chemistry, CambridgeGoogle Scholar
  3. 3.
    Tscheuschner HD, Wünsche D (1979) Rheological properties of chocolate masses and the influence of some factors. In: Sherman P (ed) Food texture and rheology, Academic Press, New York, pp 355–368Google Scholar
  4. 4.
    Schantz B, Rohm H (2005) Influence of lecithin-pgpr blends on the rheological properties of chocolate. Lebensmittel-Wissenschaft und-Technologie 38(1):41–45Google Scholar
  5. 5.
    Vavreck AN (2004) Flow of molten milk chocolate from an efflux viscometer under vibration at various frequencies and displacements. Int J Food Sci Technol 39(4):465–468CrossRefGoogle Scholar
  6. 6.
    Afoakwa EO, Paterson A, Fowler M (2007) Factors influencing rheological and textural qualities in chocolate: a review. Trends Food Sci Technol 18(6):290–298CrossRefGoogle Scholar
  7. 7.
    Steiner EH (1958) A new rheological relationship to express the flow properties of melted chocolate. Int Choc Rev 13:290–295Google Scholar
  8. 8.
    Chevalley J (1975) Rheology of chocolate. J Texture Stud 6(2):177–196CrossRefGoogle Scholar
  9. 9.
    Mongia G, Ziegler GR (2000) The role of particle size distribution of suspended solids in defining the flow properties of milk chocolate. Int J Food Prop 3(1):137–147CrossRefGoogle Scholar
  10. 10.
    Servais C, Ranc H, Roberts ID (2003) Determination of chocolate viscosity. J Texture Stud 34(5–6):467–497CrossRefGoogle Scholar
  11. 11.
    Afoakwa EO, Paterson A, Fowler M (2008) Effects of particle size distribution and composition on rheological properties of dark chocolate. Eur Food Res Technol 226(6):1259–1268CrossRefGoogle Scholar
  12. 12.
    Gabriele D, Migliori M, Baldino N, de Cindio B (2008) Influence of fat content on chocolate rheology. AIP Conf Proc 1027(1):1265–1267CrossRefGoogle Scholar
  13. 13.
    Taylor JE, Van Damme I, Johns ML, Routh AF, Wilson DI (2009) Shear rheology of molten crumb chocolate. J Food Sci 74(2):E55–E61CrossRefGoogle Scholar
  14. 14.
    Baldino N, Gabriele D, Migliori M (2010) The influence of formulation and cooling rate on the rheological properties of chocolate. Eur Food Res Technol 231:821–828CrossRefGoogle Scholar
  15. 15.
    De Graef V, Depypere F, Minnaert M, Dewettinck K (2011) Chocolate yield stress as measured by oscillatory rheology. Food Res Int 44(9):2660–2665CrossRefGoogle Scholar
  16. 16.
    Casson N (1959) A flow equation for pigment oil suspensions of the printing ink type. In: Mill C.C. (eds) Rheology of disperse systems. Pergamon Press, LondonGoogle Scholar
  17. 17.
    Windhab E (1995) Physico-chemical aspects of food processing. Chapman & Hall, LondonGoogle Scholar
  18. 18.
    Chevalley J (1994) Industrial chocolate manufacture and use, 3rd edn. Blackwell Science, LondonGoogle Scholar
  19. 19.
    ICA (2000) International confectionery association. Viscosity of chocolate and chocolate products. Analaytical method 46, Available from CAOBISCO, BelgiumGoogle Scholar
  20. 20.
    Chevalley J (1999) Chocolate flow properties. Chapman and Hall, New York, pp 182–199Google Scholar
  21. 21.
    Nguyen QD, Boger D (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24:47–88CrossRefGoogle Scholar
  22. 22.
    Barnes HA (1999) The yield stress–a review or ‘\(\pi\alpha\nu\tau\alpha \rho \varepsilon \iota\)’—everything flows? J Non-Newtonian Fluid Mech 81(1–2):133–178Google Scholar
  23. 23.
    Møller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2(4):274–283CrossRefGoogle Scholar
  24. 24.
    Bonn D, Denn MM (2009) Yield stress fluids slowly yield to analysis. Science 324(5933):1401–1402CrossRefGoogle Scholar
  25. 25.
    Fall A, Bertrand F, Ovarlez G, Bonn D (2009) Yield stress and shear banding in granular suspensions. Phys Rev Lett 103(17):178301CrossRefGoogle Scholar
  26. 26.
    ASTM E 799-03 (2007) Standard practice for determining data criteria and processing for liquid drop size analysisGoogle Scholar
  27. 27.
    Akoh CC, Min DB (2002) Food lipids: chemistry, nutrition, and biochemistry, 2nd edn. Marcel Dekker Inc, New YorkCrossRefGoogle Scholar
  28. 28.
    Bryant G, Williams SR, Qian L, Snook IK, Perez E, Pincet F (2002) How hard is a colloidal “hard-sphere” interaction?. Phys Rev E 66(6):060501CrossRefGoogle Scholar
  29. 29.
    Wyss HM, Miyazaki K, Mattsson J, Hu Z, Reichman DR, Weitz DA (2007) Strain-rate frequency superposition: a rheological probe of structural relaxation in soft materials. Phys Rev Lett 98(23):238,303CrossRefGoogle Scholar
  30. 30.
    Cho KS, Hyun K, Ahn KH, Lee SJ (2005) A geometrical interpretation of large amplitude oscillatory shear response. J Rheol 49(3):747–758CrossRefGoogle Scholar
  31. 31.
    Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458CrossRefGoogle Scholar
  32. 32.
    Reimers MJ, Dealy JM (1996) Sliding plate rheometer studies of concentrated polystyrene solutions: large amplitude oscillatory shear of a very high molecular weight polymer in diethyl phthalate. J Rheol 40(1):167–186CrossRefGoogle Scholar
  33. 33.
    Ewoldt RH, Winter P, McKinley GH (2007) “MITlaos" version 2.1 Beta for MATLAB, MATLAB-based data analysis software for characterizing nonlinear viscoelastic responses to oscillatory shear strain. Self-published, CambridgeGoogle Scholar
  34. 34.
    Farris RJ (1968) Prediction of the viscosity of multimodal suspensions from unimodal viscosity data. Trans Soc Rheol 12(2):281–301CrossRefGoogle Scholar
  35. 35.
    Afoakwa EO, Paterson A, Fowler M, Vieira J (2009) Microstructure and mechanical properties related to particle size distribution and composition in dark chocolate. Int J Food Sci Technol 44(1):111–119CrossRefGoogle Scholar
  36. 36.
    Rousset P, Sellappan P, Daoud P (2002) Effect of emulsifiers on surface properties of sucrose by inverse gas chromatography. J Chromatogr A 969(1-2):97–101CrossRefGoogle Scholar
  37. 37.
    Vernier F (1997) Influence of emulsifiers on the rheology of chocolate and suspensions of cocoa or sugar particles in oil. PhD thesis, University of ReadingGoogle Scholar
  38. 38.
    Citerne GP, Carreau PJ, Moan M (2001) Rheological properties of peanut butter. Rheol Acta 40(1):86–96CrossRefGoogle Scholar
  39. 39.
    Heymann L, Peukert S, Aksel N (2002) Investigation of the solid–liquid transition of highly concentrated suspensions in oscillatory amplitude sweeps. J Rheol 46(1):93–112CrossRefGoogle Scholar
  40. 40.
    Sumita I, Manga M (2008) Suspension rheology under oscillatory shear and its geophysical implications. Earth Planet Sci Lett 269(3-4):468–477CrossRefGoogle Scholar
  41. 41.
    Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behavior: an introduction. Springer, BerlinCrossRefGoogle Scholar
  42. 42.
    van der Vaart K, Rahmani Y, Hu Z, Bonn D, Schall P (2012) Rheology of concentrated soft and hard-sphere suspensions (submitted)Google Scholar
  43. 43.
    Fall A, Huang N, Bertrand F, Ovarlez G, Bonn D (2008) Shear thickening of cornstarch suspensions as a reentrant jamming transition. Phys Rev Lett 100(1):018301CrossRefGoogle Scholar
  44. 44.
    Fall A, Lemaître A, Bertrand F, Bonn D, Ovarlez G (2010) Shear thickening and migration in granular suspensions. Phys Rev Lett 105(26):26303CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kasper van der Vaart
    • 1
    • 2
  • Frédéric Depypere
    • 1
    • 3
  • Veerle De Graef
    • 1
  • Peter Schall
    • 4
  • Abdoulaye Fall
    • 4
  • Daniel Bonn
    • 4
  • Koen Dewettinck
    • 1
  1. 1.Laboratory of Food Technology and EngineeringUniversity of GhentGhentBelgium
  2. 2.LHE, École Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Barry Callebaut Belgium N.VLebbeke-WiezeBelgium
  4. 4.Van der Waals-Zeeman InstituteUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations