European Food Research and Technology

, Volume 236, Issue 2, pp 351–364

Biotyping Saccharomyces cerevisiae strains using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)

  • Anushka Moothoo-Padayachie
  • Himakar Reddy Kandappa
  • Suresh Babu Naidu Krishna
  • Thomas Maier
  • Patrick Govender
Original Paper

Abstract

Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS), a powerful biotyping tool for the identification of bacteria and clinical yeast isolates, was investigated as a method to rapidly identify industrial S. cerevisiae strains. In this study, an optimized sample preparation protocol was devised for the biotyping of S. cerevisiae strains. The results demonstrate that ethanol/formic acid protein extraction, of a cell density of 1 × 108 cells co-crystallized with α-cyano-4-hydroxycinnmaic acid, is required to yield mass spectral profiles that are diagnostic of each strain type. Forty-four S. cerevisiae strains commonly employed in South African fermentation-based industries were biotyped in an attempt to create a yeast reference database within a local context. The data revealed that MALDI-TOF MS can be used for the rapid and accurate identification of laboratory and industrial S. cerevisiae strains.

Keywords

Biotyping Commercial yeast MALDI S. cerevisiae database 

Supplementary material

217_2012_1898_MOESM1_ESM.docx (213 kb)
Supplementary material 1 (DOCX 212 kb)

References

  1. 1.
    Kjeldsen T (2000) Yeast secretory expression of insulin precursors. Appl Microbiol Biotechnol 54:277–286CrossRefGoogle Scholar
  2. 2.
    Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H (2005) Genetically engineered wine yeast produces a high concentration of l-lactic acid of extremely high optical purity. Appl Environ Microbiol 71:2789–2792CrossRefGoogle Scholar
  3. 3.
    Chemler JA, Yan Y, Koffas MA (2006) Biosynthesis of isoprenoids, polyunsaturated fatty acids and flavonoids in Saccharomyces cerevisiae. Microb Cell Fact 5:20CrossRefGoogle Scholar
  4. 4.
    Querol A, Ramon D (1996) The application of molecular techniques in wine microbiology. Trends Food Sci Technol 7:73–78CrossRefGoogle Scholar
  5. 5.
    Ndip RN, Akoachere JF, Dopgima LL, Ndip LM (2001) Characterization of yeast strains for wine production: effect of fermentation variables on quality of wine produced. Appl Biochem Biotechnol 95:209–220CrossRefGoogle Scholar
  6. 6.
    Gonzalez-Techera A, Jubany S, Carrau FM, Gaggero C (2001) Differentiation of industrial wine yeast strains using microsatellite markers. Lett Appl Microbiol 33:71–75CrossRefGoogle Scholar
  7. 7.
    Andrighetto C, Psomas E, Tzanetakis N, Suzzi G, Lombardi A (2000) Randomly amplified polymorphic DNA (RAPD) PCR for the identification of yeasts isolated from dairy products. Lett Appl Microbiol 30:5–9CrossRefGoogle Scholar
  8. 8.
    Gomes LH, Duarte KMR, Argueso JL, Echeverrigaray S, Taveres FCA (2000) Methods of yeast characterization from industrial products. Food Microbiol 17:217–223CrossRefGoogle Scholar
  9. 9.
    Sheehan CA, Weiss AS, Newsom IA, Flint V, O’Donnell DC (1991) Brewing yeast identification and chromosome analysis using high resolution CHEF gel electrophoresis. J Inst Brew 97:163–167CrossRefGoogle Scholar
  10. 10.
    Wightman P, Quain DE, Meaden PG (1996) Analysis of production brewing strains of yeast by DNA fingerprinting. Lett Appl Microbiol 22:90–94CrossRefGoogle Scholar
  11. 11.
    De Barros LopesM, Soden A, Henschke PA, Lang P (1996) PCR differentiation of commercial yeast strains using intron splice site primers. Appl Environ Microbiol 62:4514–4520Google Scholar
  12. 12.
    Lopez V, Fernandez-Espinar MT, Barrio E, Ramon D, Querol A (2003) A new PCR-based method for monitoring inoculated wine fermentations. Int J Food Microbiol 81:63–71CrossRefGoogle Scholar
  13. 13.
    Ness F, Lavellee F, Dubourdieu D, Aigle M, Dulau L (1993) Identification of Yeast strains using the polymerase chain reaction. J Sci Food Agric 62:89–94CrossRefGoogle Scholar
  14. 14.
    Barszczewski W, Robak M (2004) Differentiation of contaminating yeasts in brewery by PCR-based techniques. Food Microbiol 21:227–231CrossRefGoogle Scholar
  15. 15.
    Giusto C, Iacumin L, Comi G, Buiatti S, Manzano M (2006) PCR-TTGE and RAPD-PCR Techniques to analyze Saccharomyces cerevisiae and Saccharomyces carlsbergensis isolated from craft beers. J Inst Brew 112:340–345CrossRefGoogle Scholar
  16. 16.
    Manzano M, Medrala D, Giusto C, Bartolomeoli I, Urso R, Comi G (2006) Classical and molecular analyses to characterize commercial dry yeasts used in wine fermentation. J Appl Microbiol 100:599–607CrossRefGoogle Scholar
  17. 17.
    Logan J, Edwards K, Saunders N (2009) Real-time PCR current technology and applications. Caister Academic press, Norfolk, UKGoogle Scholar
  18. 18.
    Timmins EM, Quain DE, Goodacre R (1998) Differentiation of brewing yeast strains by pyrolysis mass specrometry and fourier transform infrared spectroscopy. Yeast 14:885–893CrossRefGoogle Scholar
  19. 19.
    Buchaille L, Freydiere AM, Guinet R, Gille Y (1998) Evaluation of six commercial systems for identification of medically important yeasts. Eur J Clin Microbiol Infect Dis 17:479–488Google Scholar
  20. 20.
    Fenn JP, Segal H, Barland B, Denton D, Whisenant J, Chun H, Christofferson K, Hamilton L, Carroll K (1994) Comparison of updated vitek yeast biochemical card and API 20C yeast identification systems. J Clin Microbiol 32:1184–1187Google Scholar
  21. 21.
    Hierro N, Gonzalez A, Mas A, Guillamon JM (2004) New PCR-based methods for yeast identification. J Appl Microbiol 97:792–801CrossRefGoogle Scholar
  22. 22.
    Koehler AP, Chu KC, Houang ET, Cheng AF (1999) Simple, reliable, and cost-effective yeast identification scheme for the clinical laboratory. J Clin Microbiol 37:422–426Google Scholar
  23. 23.
    Sherburn RE, Jenkins RO (2003) A novel and rapid approach to yeast differentiation using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Spectroscopy 17:31–38CrossRefGoogle Scholar
  24. 24.
    Verweij PE, Breuker IM, Rijs AJ, Meis JF (1999) Comparative study of seven commercial yeast identification systems. J Clin Pathol 52:271–273CrossRefGoogle Scholar
  25. 25.
    Wilkins CL, Lay JO (2006) In: Winefordner JD (ed) Identification of microorganisms by mass spectrometry, vol 169. Wiley, New JerseyGoogle Scholar
  26. 26.
    Ilina EN, Borovskaya AD, Serebryakova MV, Chelysheva VV, Momynaliev KT, Maier T, Kostrzewa M, Govorun VM (2009) Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the study of Helicobacter pylori. Rapid Commun Mass Spectrom 24:328–334CrossRefGoogle Scholar
  27. 27.
    Mandrell RE, Harden LA, Bates A, Miller WG, Haddon WF, Fagerquist CK (2005) Speciation of Campylobacter coli, C jejuni, C. helveticus, C. lari, C. sputorum and C. upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 71:6292–6307CrossRefGoogle Scholar
  28. 28.
    Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, Dunn J, Hall G, Wilson D, LaSala P, Krostrzewa M, Harmsen D (2008) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rDNA gene sequencing for species identification of non-fermenting bacteria. J Clin Microbiol 46:1946–1954CrossRefGoogle Scholar
  29. 29.
    Qian J, Cutler JE, Cole RB, Cai Y (2008) MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Anal Bioanal Chem 392:439–449CrossRefGoogle Scholar
  30. 30.
    Van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907CrossRefGoogle Scholar
  31. 31.
    Marklein G, Josten M, Klanke U, Muller E, Horre R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG (2009) Matrix-assisted laser desorption ionization time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47:2912–2917CrossRefGoogle Scholar
  32. 32.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995)Current protocols in molecular biology. Wiley, New JerseyGoogle Scholar
  33. 33.
    Kettaneh NA, Berglund WoldS (2005) PCA and PCL with very large data sets. Comp Stat Data Anal 48:69–85CrossRefGoogle Scholar
  34. 34.
    Van der Westhuizen TJ, Augustyn OPH, Pretorius IS (1999) The value of long-chain fatty acid analysis, randomly amplified polymorphic DNA and electrophoretic karyotyping for the characterization of wine yeast strains. S Afr J Enol Vitic 20:3–10Google Scholar
  35. 35.
    Giebel RA, Fredenberg W, Sandrin TR (2008) Characterization of environmental isolates of Enterococcus spp. by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Water Res 42:931–940CrossRefGoogle Scholar
  36. 36.
    Amiri-Eliasi B, Fenselau C (2001) Characterization of protein biomarkers by MALDI from wholefungal cells. Anal Chem 73:5228–5231CrossRefGoogle Scholar
  37. 37.
    Pretorius IS, Bauer FF (2002) Meeting the consumer challenge through genetically customized wine-yeast strains. Trends Biotechnol 20:426–432CrossRefGoogle Scholar
  38. 38.
    Schuller D, Valero E, Dequin S, Casal M (2004) Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiol Lett 231:19–26CrossRefGoogle Scholar
  39. 39.
    De Barros LopesM, Soden A, Henschke PA, Lang P (1996) PCR differentiation of commercial yeast strains using intron splice site primers. Appl Environ Microbiol 62:4514–4520Google Scholar
  40. 40.
    Salinas F, Mandaković D, Urzua U, Massera A, Miras S, Combina M, Ganga MA, Martínez C (2010) Genomic and phenotypic comparison between similar wine yeast strains of Saccharomyces cerevisiae from different geographic origins. J Appl Microbiol 108:1850–1858CrossRefGoogle Scholar
  41. 41.
    Winston F, Dollard C, Ricupero-Hovasse SL (1995) Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55CrossRefGoogle Scholar
  42. 42.
    Bruker (2007) Bruker BioTyper user manual version 2.0Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anushka Moothoo-Padayachie
    • 1
  • Himakar Reddy Kandappa
    • 1
  • Suresh Babu Naidu Krishna
    • 1
  • Thomas Maier
    • 2
  • Patrick Govender
    • 1
  1. 1.Faculty of Science and Agriculture, Department of BiochemistryUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Bruker Daltonik GmbHBremenGermany

Personalised recommendations