Advertisement

European Food Research and Technology

, Volume 235, Issue 2, pp 195–208 | Cite as

Possibilities to increase the quality in gluten-free bread production: an overview

  • Andreas HoubenEmail author
  • Agnes Höchstötter
  • Thomas Becker
Review Paper

Abstract

The market for gluten-free products is increasing. Owing to better diagnostic methods, more and more people are identified to have coeliac diseases. Production of bakery products that do not harm these people is a big challenge for bakers and cereal scientists in the twenty-first century. The use of different cereals and flours makes it necessary to find possibilities to take over the task of gluten by other flour ingredients, by the addition of different components, by different flour and dough treatment or by changing the method of baking. The purpose of this review is to give an overview about the various possibilities to increase the baking quality of gluten-free bakery products, increasing their water-binding capacity, uniform the crumb structure and increase the final bread volume. All the listed methods and ingredients are already in single use helpful to increase the quality in gluten-free bread production.

Keywords

Gluten-free Hydrocolloids Rheology Dough Bread Emulsifiers Sourdough Enzymes 

References

  1. 1.
    Gallagher E, Gormley TR, Arendt EK (2004) Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci Technol 15(3–4):143–152CrossRefGoogle Scholar
  2. 2.
    Mendoza N (2005) Coeliac disease: an overview of the diagnosis, treatment and management. Nutr Bull 30(3):231–236. doi: 10.1111/j.1467-3010.2005.00513.x CrossRefGoogle Scholar
  3. 3.
    Schober TJ (2009) Manufacture of gluten-free speciality breads and confectionery products. In: Gallagher E (ed) Gluten-free food science and technology. Wiley-Blackwell, Oxford, pp 130–180CrossRefGoogle Scholar
  4. 4.
    Heller L (2009) Commercial aspects of gluten-free products. In: Gallagher E (ed) Gluten-free food science and technology. Wiley-Blackwell, Oxford, pp 99–106CrossRefGoogle Scholar
  5. 5.
    Cauvain SP (1998) Other cereals in breadmaking. In: Cauvain SP, Young LS (eds) Technology of breadmaking. Blackie Academic & Professional, London, pp 330–346CrossRefGoogle Scholar
  6. 6.
    Schober TJ, Messerschmidt M, Bean SR, Park SH, Arendt EK (2005) Gluten-free bread from sorghum: quality differences among hybrids. Cereal Chem 82(4):394–404CrossRefGoogle Scholar
  7. 7.
    Moore MM, Schober TJ, Dockery P, Arendt EK (2004) Textural comparisons of gluten-free and wheat-based doughs, batters, and breads. Cereal Chem 81(5):567–575CrossRefGoogle Scholar
  8. 8.
    Gallagher E, Gormley TR (2002) The quality of gluten free breads produced at retail outlets. Research report. The National Food Centre, DublinGoogle Scholar
  9. 9.
    Gallagher E, Gormley TR, Arendt EK (2003) Crust and crumb characteristics of gluten free breads. J Food Eng 56(2–3):153–161CrossRefGoogle Scholar
  10. 10.
    Rosell CM (2009) Enzymatic manipulation of gluten-free breads. In: Gallagher E (ed) Gluten-free food science and technology. Wiley-Blackwell, London, pp 83–98CrossRefGoogle Scholar
  11. 11.
    Arendt EKOB CM, Schober TJ, Gallagher E, Gormley TR (2002) Development of gluten free cereal products. Farm Food 12:21–27Google Scholar
  12. 12.
    Thompson T (2009) The nutritional quality of gluten-free foods. In: Gallagher E (ed) Gluten-free food science and technology. Wiley-Blackwell, Oxford, pp 42–51CrossRefGoogle Scholar
  13. 13.
    Moore MM, Juga B, Schober TJ, Arendt EK (2007) Effect of lactic acid bacteria on properties of gluten-free sourdoughs, batters, and quality and ultrastructure of gluten-free bread. Cereal Chem 84(4):357–364CrossRefGoogle Scholar
  14. 14.
    Marco C, Perez G, Leon AE, Rosell CM (2008) Effect of transglutaminase on protein electrophoretic pattern of rice, soybean, and rice-soybean blends. Cereal Chem 85(1):59–64CrossRefGoogle Scholar
  15. 15.
    Schober TJ, Bean SR (2008) Sorghum and maize. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Elsevier, Burlington, USA, pp 101–118CrossRefGoogle Scholar
  16. 16.
    Taylor JRN, Emmambux MN (2008) Gluten-free foods and beverages from millet. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Elsevier, Burlington, pp 119–148CrossRefGoogle Scholar
  17. 17.
    Schoenlechner R, Siebenhandl S, Berghofer E (2008) Pseudocereals. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Elsevier, Burlington, pp 149–190CrossRefGoogle Scholar
  18. 18.
    Schoenlechner R, Linsberger G, Kaczyk L, Berghofer E (2006) Herstellung von gluten-freien Keksen aus den Pseudocerealien Amaranth, Quinoa und Buchweizen mit Gartenbohnen. Die Ernähr/Nutr 30(3):101–107Google Scholar
  19. 19.
    Defloor I, De Geest C, Schellekens M, Martens A, Delcour JA (1991) Emulsifiers and/or extruded starch in the production of breads from cassava. Cereal Chem 68:323–327Google Scholar
  20. 20.
    Sanchez H, Osella C, de la Torre M (2002) Optimization of gluten-free bread prepared from cornstarch, rice flour, and cassava starch. J Food Sci 67(1):416–419. doi: 10.1111/j.1365-2621.2002.tb11420.x CrossRefGoogle Scholar
  21. 21.
    Abdel-Aal E-SM (2009) Functionality of starches and hydrocolloids in gluten-free foods. In: Gallagher E (ed) Gluten-free food science and technology. Wiley-Blackwell, Oxford, pp 200–224CrossRefGoogle Scholar
  22. 22.
    Sandstedt R (1961) The function of starch in baking of bread. Baker’s Digest 35:36–44Google Scholar
  23. 23.
    Keetels CJAM, Visser KA, van Vliet T, Jurgens A, Walstra P (1996) Structure and mechanics of starch bread. J Cereal Sci 24(1):15–26. doi: 10.1006/jcrs.1996.0033 CrossRefGoogle Scholar
  24. 24.
    Deutsch H, Poms R, Heeres H, van der Kamp J-W (2008) Labeling and regulatory issues. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Elsevier, Burlington, pp 29–46CrossRefGoogle Scholar
  25. 25.
    Ronda F, Roos YH (2008) Gelatinization and freeze-concentration effects on recrystallization in corn and potato starch gels. Carbohydr Res 343(5):903–911. doi: 10.1016/j.carres.2008.01.026 CrossRefGoogle Scholar
  26. 26.
    Onyango C, Mutungi C, Unbehend G, Lindhauer MG (2011) Modification of gluten-free sorghum batter and bread using maize, potato, cassava or rice starch. LWT Food Sci Technol 44(3):681–686. doi: 10.1016/j.lwt.2010.09.006 CrossRefGoogle Scholar
  27. 27.
    Belitz H-D, Grosch W, Schieberle P (2007) Lehrbuch der Lebensmittelchemie, vol 6. Springer Verlag, BerlinGoogle Scholar
  28. 28.
    Blanshard JMV (1988) Elements of cereal product structure. In: Blanshard JMV, Mitchell JR (eds) Food structure—its creation and evaluation. Butterworth, LondonGoogle Scholar
  29. 29.
    Tegge G (2004) Stärke und Stärkederivate, 3rd edn. Behr’s Verlag, HamburgGoogle Scholar
  30. 30.
    Yuan C-KR, Thompson DB, Boyer CD (1993) Fine structure of amylopectin in relation to gelatinization and retrogradation behavior in maize starches from three wx-containing genotypes in two inbred lines. Cereal Chem 70:81–89Google Scholar
  31. 31.
    Singh J, Singh N (2001) Studies on the morphological, thermal and rheological properties of starch separated from some Indian potato cultivars. Food Chem 75(1):67–77. doi: 10.1016/s0308-8146(01)00189-3 CrossRefGoogle Scholar
  32. 32.
    Fredriksson H, Silverio J, Andersson R, Eliasson AC, Åman P (1998) The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr Polym 35(3–4):119–134. doi: 10.1016/s0144-8617(97)00247-6 CrossRefGoogle Scholar
  33. 33.
    Ronda F, Oliete B, Gómez M, Caballero PA, Pando V (2011) Rheological study of layer cake batters made with soybean protein isolate and different starch sources. J Food Eng 102(3):272–277. doi: 10.1016/j.jfoodeng.2010.09.001 CrossRefGoogle Scholar
  34. 34.
    Turabi E, Sumnu G, Sahin S (2008) Rheological properties and quality of rice cakes formulated with different gums and an emulsifier blend. Food Hydrocoll 22(2):305–312. doi: 10.1016/j.foodhyd.2006.11.016 CrossRefGoogle Scholar
  35. 35.
    Gómez M, Ronda F, Caballero PA, Blanco CA, Rosell CM (2007) Functionality of different hydrocolloids on the quality and shelf-life of yellow layer cakes. Food Hydrocoll 21(2):167–173CrossRefGoogle Scholar
  36. 36.
    Gómez M, Oliete B, García-Álvarez J, Ronda F, Salazar J (2008) Characterization of cake batters by ultrasound measurements. J Food Eng 89(4):408–413. doi: 10.1016/j.jfoodeng.2008.05.024 CrossRefGoogle Scholar
  37. 37.
    Wilderjans E, Pareyt B, Goesaert H, Brijs K, Delcour JA (2008) The role of gluten in a pound cake system: a model approach based on gluten-starch blends. Food Chem 110(4):909–915. doi: 10.1016/j.foodchem.2008.02.079 CrossRefGoogle Scholar
  38. 38.
    Stauffer CE (1990) Functional additives for bakery foods. Von Nostrand Reinhold, New YorkGoogle Scholar
  39. 39.
    Kusunose C, Fujii T, Matsumoto H (1999) Role of starch granules in controlling expansion of dough during baking. Cereal Chem 76(6):920–924CrossRefGoogle Scholar
  40. 40.
    Miyazaki M, Van Hung P, Maeda T, Morita N (2006) Recent advances in application of modified starches for breadmaking. Trends Food Sci Technol 17(11):591–599. doi: 10.1016/j.tifs.2006.05.002 CrossRefGoogle Scholar
  41. 41.
    Ternes W, Täufel A, Tunger L, Zobel M (2005) Lebensmittel-Lexikon, 4th edn. Behr’s Verlag, HamburgGoogle Scholar
  42. 42.
    Bemiller JN (2008) Hydrocolloids. In: Bello EAaFD (ed) Gluten-free cereal products and beverages, 2nd edn. Academic Press, London, pp 203–214CrossRefGoogle Scholar
  43. 43.
    Lazaridou A, Biliaderis CG (2009) Gluten-free doughs: rheological properties, testing procedures–methods and potential problems. In: Gallagher E (ed) Gluten-free food science and technology. Wiley-Blackwell, London, pp 52–82CrossRefGoogle Scholar
  44. 44.
    Toufeili I, Dagher S, Shadarevian S, Noureddine A, Sarakbi M, Farran M (1994) Formulation of gluten-free pocket-type flat breads: optimization of methylcellulose, gum Arabic, and egg albumen levels by response surface methodology. Cereal Chem 71(6):594–601Google Scholar
  45. 45.
    Rosell CM, Rojas JA, de Barber CB (2001) Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocoll 15(1):75–81CrossRefGoogle Scholar
  46. 46.
    Delcour JA, Vanhamel S, Hoseney RC (1991) Physicochemical and functional properties of rye nonstarch polysaccharides. II. Impact of a fraction containing water-soluble pentosans and proteins on gluten-starch loaf volumes. Cereal Chem 68(1):72–76Google Scholar
  47. 47.
    Arendt EK, Moore M (2006) Gluten-free cereal-based products. In: Hui YH, Corke H, De Leyn I, Nip W-K, Cross N (eds) Bakery products: science and technology, 1st edn. Blackwell, Ames, pp 471–496CrossRefGoogle Scholar
  48. 48.
    Anton AA (2008) Improving the nutritional and textural properties of wheat flour tortillas. Cereal Res Commun 36(2):301–311CrossRefGoogle Scholar
  49. 49.
    Xue J, Ngadi M (2009) Effects of methylcellulose, xanthan gum and carboxymethylcellulose on thermal properties of batter systems formulated with different flour combinations. Food Hydrocoll 23(2):286–295CrossRefGoogle Scholar
  50. 50.
    Anton AA, Artfield SD (2008) Hydrocolloids in gluten-free breads: a review. Int J Food Sci Nutr 59(1):11–23CrossRefGoogle Scholar
  51. 51.
    Torbica A, Hadnaðev M, Dapcevic T (2010) Rheological, textural and sensory properties of gluten-free bread formulations based on rice and buckwheat flour. Food Hydrocoll 24(6–7):626–632CrossRefGoogle Scholar
  52. 52.
    Rodd AB, Dunstan DE, Boger DV (2000) Characterisation of xanthan gum solutions using dynamic light scattering and rheology. Carbohydr Polym 42(2):159–174. doi: 10.1016/s0144-8617(99)00156-3 CrossRefGoogle Scholar
  53. 53.
    Doublier JL, Cuvelier G (1996) Gums and hydrocolloids: functional aspects. In: Eliasson AC (ed) Carbo-hydrates in food. Marcel Dekker, New York, pp 283–318Google Scholar
  54. 54.
    Haque A, Richardson RK, Morris ER, Dea ICM (1993) Xanthan-like [`]weak gel’ rheology from dispersions of ispaghula seed husk. Carbohydr Polym 22(4):223–232. doi: 10.1016/0144-8617(93)90124-m CrossRefGoogle Scholar
  55. 55.
    Hoefler AC (2004) Hydrocolloids. Eagan Press, St. Paul, MNGoogle Scholar
  56. 56.
    Bell DA (1990) Methylcellulose as a structure enhancer in bread baking. Cereal Foods World 35:1001–1006Google Scholar
  57. 57.
    Haque A, Richardson RK, Morris ER, Gidley MJ, Caswell DC (1993) Thermogelation of methylcellulose. Part II: effect of hydroxypropyl substituents. Carbohydr Polym 22(3):175–186. doi: 10.1016/0144-8617(93)90138-t CrossRefGoogle Scholar
  58. 58.
    Nieto MB (2009) Structure and function of polysaccharide gum-based edible films and coatings. In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications. Springer, Dordrecht, pp 57–112CrossRefGoogle Scholar
  59. 59.
    Schober TJ, Bean SR, Boyle DL, Park S-H (2008) Improved viscoelastic zein-starch doughs for leavened gluten-free breads: their rheology and microstructure. J Cereal Sci 48(3):755–767. doi: 10.1016/j.jcs.2008.04.004 CrossRefGoogle Scholar
  60. 60.
    Jongh G (1961) The formation of dough and bread structures. I. The ability of starch to form structures, and the improving effect of glyceryl monostearate. Cereal Chem 38:140–152Google Scholar
  61. 61.
    Lazaridou A, Duta D, Papageorgiou M, Belc N, Biliaderis CG (2007) Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J Food Eng 79(3):1033–1047CrossRefGoogle Scholar
  62. 62.
    Hüttner EK, Arendt EK (2010) Recent advances in gluten-free baking and the current status of oats. Trends Food Sci Technol 21(6):303–312. doi: 10.1016/j.tifs.2010.03.005 CrossRefGoogle Scholar
  63. 63.
    Biliaderis CG, Arvanitoyannis I, Izydorczyk MS, Prokopowich DJG (1997) Effect of hydrocolloids on gelatinization and structure formation in concentrated waxy maize and wheat starch gels. Starch 49 (7–8):278–283Google Scholar
  64. 64.
    Gallagher E, Kunkel A, Gormley TR, Arendt EK (2003) The effect of dairy and rice powder addition on loaf and crumb characteristics, and on shelf life (intermediate and long-term) of gluten-free breads stored in a modified atmosphere. Eur Food Res Technol 218(1):44–48CrossRefGoogle Scholar
  65. 65.
    van Riemsdijk LE, van der Goot AJ, Hamer RJ, Boom RM (2011) Preparation of gluten-free bread using a meso-structured whey protein particle system. J Cereal Sci 53(3):355–361. doi: 10.1016/j.jcs.2011.02.006 CrossRefGoogle Scholar
  66. 66.
    Stathopoulos CE (2008) Dairy-based ingredients. In: Elke KA, Fabio Dal B (eds) Gluten-free cereal products and beverages. Academic Press, San Diego, pp 217–236CrossRefGoogle Scholar
  67. 67.
    Chandan RI (1997) Properties of milk and its components. In: Dairy-Based Ingredients. Eagan Press Handbook, American Association of Cereal Chemists, St. Paul, MN, pp 1–10Google Scholar
  68. 68.
    Clark AH (1998) Gelation of globular proteins. In: Hill SE, Ledward DA, Mitchell JR (eds) Functional properties of food macromolecules, 2 edn edn. Aspen Publishers, A Chapman & Hall Food Science Book, Gaithersburg, MD, pp 77–142Google Scholar
  69. 69.
    Töpel A (2004) Chemie und Physik der Milch: Naturstoff-Rohstoff-Lebensmittel. Behr’s Verlag, HamburgGoogle Scholar
  70. 70.
    Kenny S, Wehrle K, Stanton C, Arendt EK (2000) Incorporation of dairy ingredients into wheat bread: effects on dough rheology and bread quality. Eur Food Res Technol 210(6):391–396CrossRefGoogle Scholar
  71. 71.
    Cocup RO, Sanderson WB (1987) Functionality of dairy ingredients in bakery products. Food Technol 41:86–90Google Scholar
  72. 72.
    O’Brien CM, Grau H, Neville DP, Keogh MK, Arendt EK (2000) Functionality of microencapsulated high-fat powders in wheat bread. Eur Food Res Technol 212(1):64–69CrossRefGoogle Scholar
  73. 73.
    Kenny S, Wehrle K, Auty M, Arendt EK (2001) Influence of sodium caseinate and whey protein on baking properties and rheology of frozen dough. Cereal Chem 78(4):458–463CrossRefGoogle Scholar
  74. 74.
    Singh N, Kaur Bajaj I, Singh RP, Singh Gujral H (2003) Effect of different additives on mixograph and bread making properties of Indian wheat flour. J Food Eng 56(1):89–95. doi: 10.1016/s0260-8774(02)00151-6 CrossRefGoogle Scholar
  75. 75.
    Ortolani C, Pastorello EA (2006) Food allergies and food intolerances. Best Pract Res Clin Gastroenterol 20(3):467–483. doi: 10.1016/j.bpg.2005.11.010 CrossRefGoogle Scholar
  76. 76.
    Whitehead PA (1992) Surimi. Food Sci Technol Today 9:15–18Google Scholar
  77. 77.
    Gormley TR, Elbel C, Gallagher E, Arendt EK (2003) Fish surimi as an ingredient in gluten-free breads. Paper presented at the Proceedings of the First Joint Trans Atlantic Fisheries Technology Conference, IcelandGoogle Scholar
  78. 78.
    Fretheim K, Egelandsdal B, Langmyhr E, Eide O, Ofstad R (1988) Surimi-based foods—the general story and the Norwegian approach. In: Blanshard JMV, Mitchell JR (eds) Food structure—its creation and evaluation. Butterworths, London, pp 265–278Google Scholar
  79. 79.
    Nielsen R, PlGott G (1994) Gel strength increased in low-grade heat-set surimi with blended phosphates. J Food Sci 59(2):246–250. doi: 10.1111/j.1365-2621.1994.tb06940.x CrossRefGoogle Scholar
  80. 80.
    Trondsen T (1998) Blue whiting surimi: new perspectives on the market value. Fish Res 34(1):1–15. doi: 10.1016/s0165-7836(97)00088-x CrossRefGoogle Scholar
  81. 81.
    Lanier TC, Carvajal P, Yongsawatdigul J (2005) Surimi gelation chemistry. In: Park JW (ed) Surimi and surimi seafood, 2nd edn. CRC Press/Taylor & Francis Group, LLC, Boca Raton, FL, pp 435–490Google Scholar
  82. 82.
    Hastings RJ (1989) Comparison of the properties of gels derived from cod surimi and from unwashed and once-washed cod mince. Int J Food Sci Technol 24(1):93–102. doi: 10.1111/j.1365-2621.1989.tb00622.x Google Scholar
  83. 83.
    Crockett R, Ie P, Vodovotz Y (2011) Effects of soy protein isolate and egg white solids on the physicochemical properties of gluten-free bread. Food Chem (in Press). Accepted Manuscript. doi: 10.1016/j.foodchem.2011.04.030
  84. 84.
    Souci SW, Fachmann W, Kraut H (2008) Die Zusammensetzung der Lebensmittel, Nährwert-Tabellen. MedPharm Scientific Publishers, Garching bei MünchenGoogle Scholar
  85. 85.
    Ahmed J, Ramaswamy HS, Alli I (2006) Thermorheological characteristics of soybean protein isolate. J Food Sci 71(3):E158–E163. doi: 10.1111/j.1365-2621.2006.tb15629.x CrossRefGoogle Scholar
  86. 86.
    Ludewig H-G (2001) Rezeptbestandteile und deren funktionelle Eigenschaften. In: Seibel W (ed) Feine Backwaren. Behr’s Verlag, Hamburg, pp 41–86Google Scholar
  87. 87.
    Kato A, Ibrahim HR, Watanabe H, Honma K, Kobayashi K (1990) Enthalpy of denaturation and surface functional properties of heated egg white proteins in the dry state. J Food Sci 55(5):1280–1283. doi: 10.1111/j.1365-2621.1990.tb03916.x CrossRefGoogle Scholar
  88. 88.
    Damodaran S (2007) Amino acids, peptides, and proteins. In: Damodaran S, Parkin KL, Fennema OR (eds) Fennema’s food chemistry, 4th edn. CRC Press, Boca Raton, FL, pp 2137–2329Google Scholar
  89. 89.
    Moore MM, Heinbockel M, Dockery P, Ulmer HM, Arendt EK (2006) Network formation in gluten-free bread with application of transglutaminase. Cereal Chem 83(1):28–36CrossRefGoogle Scholar
  90. 90.
    Jonagh G, Slim T, Greve H (1968) Bread without gluten. Baker’s Dig 6:24–29Google Scholar
  91. 91.
    Eggleston G, Omoaka PE, Ihedioha DO (1992) Development and evaluation of products from cassava flour as new alternatives to wheaten breads. J Sci Food Agric 59(3):377–385. doi: 10.1002/jsfa.2740590315 CrossRefGoogle Scholar
  92. 92.
    Gujral HS, Haros M, Rosell CM (2003) Starch hydrolysing enzymes for retarding the staling for rice bread. Cereal Chem 80(6):750–754CrossRefGoogle Scholar
  93. 93.
    Gujral HS, Guardiola I, Carbonell JV, Rosell CM (2003) Effect of cyclodextrin glycosyl transferase on dough rheology and bread quality from rice flour. J Agric Food Chem 51(16):4846. doi: 10.1021/jf0304472 CrossRefGoogle Scholar
  94. 94.
    Goesaert H, Gebruers K, Courtin CM, Brijs K, Delcour JA (2006) Enzymes in breadmaking. In: Hui YH, Corke H, De Leyn I, Nip W-K, Cross N (eds) Bakery products: science and technology. Blackwell, Ames, Iowa, pp 337–364CrossRefGoogle Scholar
  95. 95.
    Goesaert H, Courtin CM, Delcour JA (2008) Use of enzymes in the production of cereal-based functional foods and food ingredients. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Elsevier, Burlington, pp 237–265CrossRefGoogle Scholar
  96. 96.
    Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M (1989) Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric Biol Chem 53(10):2613–2617CrossRefGoogle Scholar
  97. 97.
    Motoki M, Kumazawa Y (2000) Recent research trends in transglutaminase technology for food processing. Food Sci Technol Res 6(3):151–160CrossRefGoogle Scholar
  98. 98.
    Yokoyama K, Pezolet M, Gueguen J (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64(4):447–454CrossRefGoogle Scholar
  99. 99.
    Dickinson E (1997) Enzymic crosslinking as a tool for food colloid rheology control and interfacial stabilization. Trends Food Sci Technol 8(10):334–339. doi: 10.1016/s0924-2244(97)01067-4 CrossRefGoogle Scholar
  100. 100.
    Gerrard JA (2002) Protein-protein crosslinking in food: methods, consequences, applications. Trends Food Sci Technol 13(12):391–399. doi: 10.1016/s0924-2244(02)00257-1 CrossRefGoogle Scholar
  101. 101.
    Ajinomoto (2010) http://www.Ajinomoto.com
  102. 102.
    Han X-QD (1996) Thermodynamic compatibility of substrate proteins affects their cross-linking by Transglutaminase. Food Chem 44(5):1211–1217CrossRefGoogle Scholar
  103. 103.
    Gujral HS, Rosell C (2004) Functionality of rice flour modified with a microbial transglutaminase. J Cereal Sci 39:225–230CrossRefGoogle Scholar
  104. 104.
    Renzetti S, Dal Bello F, Arendt EK (2008) Microstructure, fundamental rheology and baking characteristics of batters and breads from different gluten-free flours treated with a microbial transglutaminase. J Cereal Sci 48(1):33–45CrossRefGoogle Scholar
  105. 105.
    Hoseney RC, Faubion JM (1981) A mechanism for the oxidative gelation of wheat flour water-soluble pentosans. Cereal Chem 58(5):421–424Google Scholar
  106. 106.
    Tilley KA, Benjamin RE, Bagorogoza KE, Okot-Kotber BM, Prakash O, Kwen H (2001) Tyrosine cross-links: molecular basis of gluten structure and function. J Agric Food Chem 49(5):2627–2632CrossRefGoogle Scholar
  107. 107.
    Figueroa-Espinoza MC, Morel MH, Rouau X (1998) Effect of lysine, tyrosine, cysteine and glutathione on the oxidative cross-linking of feruloylated arabinoxylans by a fungal lac-case. J Agric Food Chem 46(7):2583–2589CrossRefGoogle Scholar
  108. 108.
    Ohnishi M, Mitsune T, Tabata M, Kubota M, Rokushika S (1997) An attempt to evaluate the subsite structure of cycloamylose glucanotransferase from Bacillus stearothermophilus: based on its transfer reaction with substrate malto-oligosaccharides. Starch Stärke 49(9):360–363. doi: 10.1002/star.19970490907 CrossRefGoogle Scholar
  109. 109.
    Lin W, Lineback OR (1990) Changes in carbohydrate fractions in enzyme-supplemented bread and the potential relationship to staling. Starch Stärke 42(10):385–394. doi: 10.1002/star.19900421005 CrossRefGoogle Scholar
  110. 110.
    Moroni AV, Dal Bello F, Arendt EK (2009) Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiol 26(7):676–684. doi: 10.1016/j.fm.2009.07.001 CrossRefGoogle Scholar
  111. 111.
    Brandt MJG MG (2006) Handbuch Sauerteig, vol 6. vollständig überarbeitete Auflage. Behr’s Verlag, HamburgGoogle Scholar
  112. 112.
    Gänzle MG, Loponen J, Gobbetti M (2008) Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci Technol 19(10):513–521CrossRefGoogle Scholar
  113. 113.
    Sterr Y, Weiss A, Schmidt H (2009) Evalutation of lactic acid bacteria for sourdough fermentation of amaranth. Int J Food Microbiol 136(1):75–82. doi: 10.1016/j.ijfoodmicro.2009.09.006 CrossRefGoogle Scholar
  114. 114.
    Ryan LAM, Dal Bello F, Renzetti S, Arendt EK (2006) The use of sourdough to improve the baking quality of gluten-free bread. In: World Grain Summit, San Francisco. 17–20 SeptemberGoogle Scholar
  115. 115.
    De Vuyst L, Neysens P (2005) The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci Technol 16(1–3):43–56. doi: 10.1016/j.tifs.2004.02.012 CrossRefGoogle Scholar
  116. 116.
    Clarke CI, Schober TJ, Arendt EK (2002) Effect of single strain and traditional mixed strain starter cultures on rheological properties of wheat dough and on bread quality. Cereal Chem 79(5):640–647CrossRefGoogle Scholar
  117. 117.
    Clarke CI, Schober TJ, Dockery P, O’Sullivan K, Arendt EK (2004) Wheat sourdough fermentation: effects of time and acidification on fundamental rheological properties. Cereal Chem 81(3):409–417CrossRefGoogle Scholar
  118. 118.
    Jekle M, Houben A, Mitzscherling M, Becker T (2010) Effects of selected lactic acid bacteria on the characteristics of amaranth sourdough. J Sci Food Agric 90(13):2326–2332. doi: 10.1002/jsfa.4091 CrossRefGoogle Scholar
  119. 119.
    De Vuyst L, De Vin F, Vaningelgem F, Degeest B (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11(9):687–707. doi: 10.1016/s0958-6946(01)00114-5 CrossRefGoogle Scholar
  120. 120.
    Moore MM, Dal Bello F, Arendt EK (2008) Sourdough fermented by Lactobacillus plantarum FST 1.7 improves the quality and shelf life of gluten-free bread. Eur Food Res Technol 226(6):1309–1316CrossRefGoogle Scholar
  121. 121.
    Barber B, Ortolá C, Barber S, Fernández F (1992) Storage of packaged white bread. III. Effects of sour dough and addition of acids on bread characteristics. Zeitschrift für Lebensmittel Untersuchung und Forschung 149:442–449CrossRefGoogle Scholar
  122. 122.
    Arendt EK, Ryan LAM, Dal Bello F (2007) Impact of sourdough on the texture of bread. Food Microbiol 24(2):165–174. doi: 10.1016/j.fm.2006.07.011 CrossRefGoogle Scholar
  123. 123.
    Galle S, Schwab C, Dal Bello F, Coffey A, Gänzle MG, Arendt EK (2012) Influence of in situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. Int J Food Microbiol (0). doi: 10.1016/j.ijfoodmicro.2012.01.009
  124. 124.
    De Vuyst L, De Vin F (2007) 2.15—Exopolysaccharides from lactic acid bacteria. In: Editor-in-Chief: Johannis PK (ed) Comprehensive glycoscience. Elsevier, Oxford, pp 477–519Google Scholar
  125. 125.
    Kaditzky S, Vogel RF (2008) Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli. Eur Food Res Technol 228(2):291–299CrossRefGoogle Scholar
  126. 126.
    Schober TJ, Bean SR, Boyle DL (2007) Gluten-free sorghum bread improved by sourdough fermentation: Biochemical, rheological, and microstructural background. J Agric Food Chem 55(13):5137–5146CrossRefGoogle Scholar
  127. 127.
    Blanco CA, Ronda F, Pérez B, Pando V (2011) Improving gluten-free bread quality by enrichment with acidic food additives. Food Chem 127(3):1204–1209. doi: 10.1016/j.foodchem.2011.01.127 CrossRefGoogle Scholar
  128. 128.
    Brooker BE (1993) The stabilization of air in cake batters—the role of fat. Food Struct 12:285–296Google Scholar
  129. 129.
    Brooker BE (1996) The role of fat in the stabilization of gas cells in bread dough. J Cereal Sci 24:187–198CrossRefGoogle Scholar
  130. 130.
    Schober TJ, O’Brien CM, McCarthy D, Darnedde A, Arendt EK (2003) Influence of gluten-free flour mixes and fat powders on the quality of gluten-free biscuits. Eur Food Res Technol 216(5):369–376Google Scholar
  131. 131.
    Nunes MHB, Moore MM, Ryan LAM, Arendt EK (2009) Impact of emulsifiers on the quality and rheological properties of gluten-free breads and batters. Eur Food Res Technol 228(4):633–642CrossRefGoogle Scholar
  132. 132.
    Stauffer CE (2000) Emulsifiers as antistaling agents. Cereal Foods World 45(3):106–110Google Scholar
  133. 133.
    Hoseney RC (1984) Gas retention in bread doughs. Cereal Foods World 29(5):305–308Google Scholar
  134. 134.
    Gallagher E (2009) Coeliac disease and gluten-free research: what does the future hold for the physician, the patient and the scientist? In: Gallagher E (ed) Gluten-free food science and technology. Wiley-Blackwell, London, pp 225–232CrossRefGoogle Scholar
  135. 135.
    Hüttner E, Dal Bello F, Arendt E (2009) Fundamental study on the effect of hydrostatic pressure treatment on the bread-making performance of oat flour. Eur Food Res Technol 230(6):827–835. doi: 10.1007/s00217-010-1228-4 CrossRefGoogle Scholar
  136. 136.
    (VTT) TRCoF (2010) New and improved gluten-free foods developed for patients with celiac disease. http://www.alphagalileo.org/Organisations/ViewItem.aspx?OrganisationId=377&ItemId=75188&CultureCode=en. Accessed 19.6.2010

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Andreas Houben
    • 1
    Email author
  • Agnes Höchstötter
    • 1
  • Thomas Becker
    • 1
  1. 1.Lehrstuhl für Brau- und GetränketechnologieTU MünchenFreisingGermany

Personalised recommendations