European Food Research and Technology

, Volume 234, Issue 5, pp 821–832 | Cite as

Cinnamon essential oil and cinnamaldehyde in the control of bacterial biofilms formed on stainless steel surfaces

  • Maíra Maciel Mattos de Oliveira
  • Danilo Florisvaldo Brugnera
  • Josianne Arantes do Nascimento
  • Nádia Nara Batista
  • Roberta Hilsdorf Piccoli
Original Paper

Abstract

The antibacterial effects of Cinnamomum cassia essential oil (EO) and cinnamaldehyde were evaluated against single- and mixed-species cultivation of enteropathogenic Escherichia coli (EPEC) and Listeria monocytogenes attached to stainless steel. A central composite rotational design with two variables and eleven assays was used to optimize the concentrations (0.00–1.00% v/v for the EO and 0.00–0.80% v/v for cinnamaldehyde) and contact times (1–21 min). The models generated were validated, and the effectiveness of C. cassia EO and cinnamaldehyde was compared with that of commercially available chemical sanitizers. Cinnamaldehyde and C. cassia EO proved to be efficient alternatives to commercial chemical sanitizers in the reduction or elimination of sessile bacterial cells. The activity of these natural compounds was, in most cases, equivalent or superior to that of the chemical sanitizers tested. However, L. monocytogenes was more resistant than EPEC to C. cassia EO and cinnamaldehyde, and the bacterial association in mixed-species biofilms made them more susceptible to these compounds.

Keywords

Food-borne pathogens Enteropathogenic Escherichia coli (EPEC) Listeria monocytogenes Bacterial adhesion Natural sanitizers 

References

  1. 1.
    Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils: a review. Food Chem Toxicol 46:446–475CrossRefGoogle Scholar
  2. 2.
    Chorianopoulos N, Kalpoutzakis E, Aligiannis N, Mitaku S, Nychas GJ, Haroutounian AS (2004) Essential oils of Satureja, Origanum, and Thymus species: chemical composition and antibacterial activities against foodborne pathogens. J Agric Food Chem 52:8261–8267CrossRefGoogle Scholar
  3. 3.
    Rota C, Carramiñana JJ, Burillo J, Herrera A (2004) In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. J Food Prot 67:1252–1256Google Scholar
  4. 4.
    Oussalah M, Caillet S, Saucier L, Lacroix M (2007) Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18:414–420CrossRefGoogle Scholar
  5. 5.
    Ooi LSM, Li Y, Kam SL, Wang H, Wong EYL, Ooi VEC (2006) Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal Herb Cinnamomum cassia Blume. Am J Chin Med 34:511–522CrossRefGoogle Scholar
  6. 6.
    Gill AO, Holley RA (2006) Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int J Food Microbiol 108:1–9CrossRefGoogle Scholar
  7. 7.
    Ronner AB, Wong ACL (1993) Biofilm development and sanitizer inactivation of Listeria monocytogenes and Salmonella typhimurium on stainless steel and Buna-n rubber. J Food Prot 56:750–758Google Scholar
  8. 8.
    El-Ziney MG, Jakobsen M (2009) Effectiveness of reuterin alone and in combination with nisin or other food contact surfaces sanitizers and cleaners for disinfection of stainless steel surfaces contaminated with Escherichia coli and Listeria innocua. Int J Food Agr Environ 7:145–149Google Scholar
  9. 9.
    Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675–7679CrossRefGoogle Scholar
  10. 10.
    Nikolaev YA, Plakunov VK (2007) Biofilm: “City of Microbes” or an analogue of multicellular organisms? Microbiology 76:125–138CrossRefGoogle Scholar
  11. 11.
    Flint S, Palmer J, Bloemen K, Brooks J, Crawford R (2001) The growth of Bacillus stearothermophilus on stainless steel. J Appl Microbiol 90:151–157CrossRefGoogle Scholar
  12. 12.
    Midelet G, Carpentier B (2004) Impact of cleaning and disinfection agents on biofilm structure and on microbial transfer to a solid model food. J Appl Microbiol 97:262–270CrossRefGoogle Scholar
  13. 13.
    Norwood DE, Gilmour A (2000) The growth and resistance to sodium hypochlorite of Listeria monocytogenes in a steady-state multispecies biofilm. J Appl Microbiol 88:512–520CrossRefGoogle Scholar
  14. 14.
    Ryu JH, Beuchat LR (2005) Biofilm Formation by Escherichia coli O157:H7 on stainless steel: effect of exopolysaccharide and curli production on its resistance to chlorine. Appl Environ Microbiol 71:247–254CrossRefGoogle Scholar
  15. 15.
    Lomonaco S, Decastelli L, Nucera D, Gallina S, Bianchi DM, Civera T (2009) Listeria monocytogenes in Gorgonzola: subtypes, diversity and persistence over time. Int J Food Microbiol 128:516–520CrossRefGoogle Scholar
  16. 16.
    Vanegas MC, Vásquez E, Martinez AJ, Rueda AM (2009) Detection of Listeria monocytogenes in raw whole milk for human consumption in Colombia by real-time PCR. Food Control 20:430–432CrossRefGoogle Scholar
  17. 17.
    Dorozynski A (2000) Seven die in French listeria outbreak. BMJ 320:601CrossRefGoogle Scholar
  18. 18.
    Jay JM, Loessner MJ, Golden DA (2005) Modern food microbiology. Springer, New YorkGoogle Scholar
  19. 19.
    Lado BH, Yousef AE (2006) Characteristics of Listeria monocytogenes important to food processors. In: Ryser E, Marth EH (eds) Listeria, listeriosis and food safety. CRC Press, Boca RatonGoogle Scholar
  20. 20.
    Unnerstad H, Bannerman E, Bille J, Danielsson-Tham ML, Waak E, Tham W (1996) Prolonged contamination of a dairy with Listeria monocytogenes. Netherland Milk Dairy J 50:493–499Google Scholar
  21. 21.
    Chen HD, Frankel G (2005) Enteropathogenic Escherichia coli: unraveling pathogenesis. FEMS Microbiol Rev 29:83–98CrossRefGoogle Scholar
  22. 22.
    Ibram S, Munteanu A, Stolica B, Enescu M, Savulescu C, Costinea R, Popa MI (2007) An outbreak of gastroenteritis in a campsite in Romania, July 2007. Eurosurveillance 12:E070816.1Google Scholar
  23. 23.
    Altalhi AD, Hassan SA (2009) Bacterial quality of raw milk investigated by Escherichia coli and isolates analysis for specific virulence-gene markers. Food Control 20:913–917CrossRefGoogle Scholar
  24. 24.
    Duffy LL, O’Callaghan D, McAuley CM, Fegan N, Craven HM (2009) Virulence properties of Escherichia coli isolated from Australian dairy powder factory environments. Int Dairy J 19:178–179CrossRefGoogle Scholar
  25. 25.
    Oliveira MMM, Brugnera DF, Cardoso MG, Alves E, Piccoli RH (2010) Disinfectant action of Cymbopogon sp. essential oils in different phases of biofilm formation by Listeria monocytogenes on stainless steel surface. Food Control 21:549–553CrossRefGoogle Scholar
  26. 26.
    Amalaradjou MAR, Venkitanarayanan K (2011) Effect of trans-cinnamaldehyde on inhibition and inactivation of Cronobacter sakazakii biofilm on abiotic surfaces. J Food Prot 74:200–208CrossRefGoogle Scholar
  27. 27.
    Rossoni EMM, Gaylarde CC (2000) Comparison of sodium hypoclorite and peracetic acid as sanitizing agents for stainless steel food processing surfaces using epifluorescence microscopy. Int J Food Microbiol 61:81–85CrossRefGoogle Scholar
  28. 28.
    Oliveira MMM, Brugnera DF, Alves E, Piccoli RH (2010) Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential. Braz J Microbiol 41:97–106CrossRefGoogle Scholar
  29. 29.
    Andrade NJ, Pinto CLO, Rosado MS (2008) Controle da higienização na indústria de alimentos. In: Andrade NJ (ed) Higiene na indústria de alimentos. Varela, São PauloGoogle Scholar
  30. 30.
    Aquino S, Germano MI, Germano PML (2003) Princípios gerais de higienização. In: Germano PML, Germano MIS (eds) Higiene e vigilância sanitária de alimentos. Varela, São PauloGoogle Scholar
  31. 31.
    Chang ST, Chen PF, Chang SC (2001) Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J Ethnopharmacol 77:123–127CrossRefGoogle Scholar
  32. 32.
    Gill AO, Holley RA (2004) Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl Environ Microbiol 70:5750–5755CrossRefGoogle Scholar
  33. 33.
    Oussalah M, Caillet S, Lacroix M (2006) Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. J Food Prot 69:1046–1055Google Scholar
  34. 34.
    Mann CM, Cox SD, Markham JL (2000) The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Lett Appl Microbiol 30:294–297CrossRefGoogle Scholar
  35. 35.
    Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods: a review. Int J Food Microbiol 94:223–253CrossRefGoogle Scholar
  36. 36.
    Bezić N, Skocibusic M, Dinkic V, Radonic A (2003) Composition and antimicrobial activity of Achillea clavennae L. essential oil. Phytother Res 17:1037–1040CrossRefGoogle Scholar
  37. 37.
    Pérez-Conesa D, McLandsborough L, Weiss J (2006) Inhibition and inactivation of Listeria monocytogenes and Escherichia coli O157:H7 colony biofilms by micellar-encapsulated eugenol and carvacrol. J Food Prot 69:2947–2954Google Scholar
  38. 38.
    Rieu A, Briandet R, Habimana O, Garmyn D, Guzzo J, Piveteau P (2008) Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl Environ Microbiol 74:4491–4497CrossRefGoogle Scholar
  39. 39.
    van der Veen S, Abee T (2010) Dependence of continuous-flow biofilm formation by Listeria monocytogenes EGD-e on SOS response factor YneA. Appl Environ Microbiol 76:1992–1995CrossRefGoogle Scholar
  40. 40.
    van der Veen S, Abee T (2010) Importance of SigB for Listeria monocytogenes static and continuous-flow biofilm formation and disinfectant resistance. Appl Environ Microbiol 76:7854–7860CrossRefGoogle Scholar
  41. 41.
    Simões M, Simões LC, Vieira MJ (2009) Species association increases biofilm resistance to chemical and mechanical treatments. Water Res 43:229–237CrossRefGoogle Scholar
  42. 42.
    van der Veen S, Abee T (2011) Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid. Int J Food Microbiol 144:421–431CrossRefGoogle Scholar
  43. 43.
    Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72:3916–3923CrossRefGoogle Scholar
  44. 44.
    Rieu A, Lemaître JP, Guzzo J, Piveteau P (2008) Interactions in dual species biofilms between Listeria monocytogenes EGD-e and several strains of Staphylococcus aureus. Int J Food Microbiol 126:76–82CrossRefGoogle Scholar
  45. 45.
    Deng DM, Hoogenkamp MA, Exterkate RAM, Jiang LM, van der Sluis LWM, Ten Cate JM, Crielaard W (2009) Influence of Streptococcus mutans on Enterococcus faecalis biofilm formation. J Endod 35:1249–1252CrossRefGoogle Scholar
  46. 46.
    Chorianopoulos NG, Giaouris ED, Skandamis PN, Haroutounian SA, Nychas GJE (2008) Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid–base sanitizers. J Appl Microbiol 104:1586–1596CrossRefGoogle Scholar
  47. 47.
    Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry. Int J Food Microbiol 42:9–27CrossRefGoogle Scholar
  48. 48.
    Bremer PJ, Fillery S, McQuillan AJ (2006) Laboratory scale Clean-In-Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. Int J Food Microbiol 106:254–262CrossRefGoogle Scholar
  49. 49.
    Best M, Kennedy ME, Coates F (1990) Efficacy of a variety of disinfectants against Listeria spp. Appl Environ Microbiol 56:377–380Google Scholar
  50. 50.
    Kich JD, Borowsky L, Silva VS, Ramenzoni M, Triques N, Kooler FL, Cardoso MRI (2004) Evaluation of the antibacterial activity of six commercial disinfectants against Salmonella typhimurium strains isolated from swine. Acta Sci Vet 32:33–39Google Scholar
  51. 51.
    Souza JB, Daniel LA (2005) Comparison between sodium hipoclorite and peracetic acid for E. coli, coliphages and C. perfringens inactivation of high organic matter concentration water. Eng Sanit Ambient 10:111–117CrossRefGoogle Scholar
  52. 52.
    Sidhu MS, Langsrud S, Holck A (2001) Disinfectant and antibiotic resistance of lactic acid bacteria isolated from food industry. Microb Drug Resist 7:73–83CrossRefGoogle Scholar
  53. 53.
    Simões M, Simões LC, Machado I, Pereira MO, Vieira MJ (2006) Control of flow-generated biofilms using surfactants—evidence of resistance and recovery. Food Bioprod Process 84:338–345CrossRefGoogle Scholar
  54. 54.
    Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT—Food Sci Technol 43:573–583Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Maíra Maciel Mattos de Oliveira
    • 1
  • Danilo Florisvaldo Brugnera
    • 1
  • Josianne Arantes do Nascimento
    • 1
  • Nádia Nara Batista
    • 1
  • Roberta Hilsdorf Piccoli
    • 1
  1. 1.Department of Food ScienceFederal University of LavrasLavrasBrazil

Personalised recommendations