Advertisement

European Food Research and Technology

, Volume 234, Issue 2, pp 253–261 | Cite as

Cabernet sauvignon red wine astringency quality control by tannin characterization and polymerization during storage

  • Kleopatra Chira
  • Michael Jourdes
  • Pierre-Louis TeissedreEmail author
Original Paper

Abstract

Cabernet Sauvignon wine grape variety is an emblematic cultivar of Bordeaux winegrowing region. Twenty-three vintages of Cabernet Sauvignon wines from chateau Mouton Rothschild were studied using chemical and sensory analysis. Total phenolic compounds, total anthocyanins, total tannins, hue, CI (colour intensity), titratable acidity, ethanol level and pH were evaluated. Percentage of galloylation (%G), of prodelphinidins (%P) as well as mean degree of polymerization (mDP) were also determined. Sensory analysis concerning astringency intensity using a 0–7 point scale was performed in parallel. Correlations between bottle wine ageing and mDP and astringency were obtained. Increasing age gave lower scores in astringency intensity (R 2 = 0.598, p = 0.000) and inferior mDP values (R 2 = 0.851, p = 0.000). In addition, we evidenced that mDP is an analytical parameter for estimating astringency (R 2 = 0.556, p = 0.000) in red CS (Cabernet Sauvignon) wine from Pauillac denomination.

Keywords

Wine Tannins Mean degree of polymerization HPLC–UV/MS Storage Astringency 

Notes

Acknowledgments

The authors gratefully thank CIVB (Conseil Interprofessionnel des Vins de Bordeaux), Ministère de La Recherche et Enseignement Supérieur for providing financial support, the Region Aquitaine for providing funds for the acquisition of the HPLC–MS(n)-UV material, chateau Mouton Rothschild (premier grand cru classé Pauillac) for providing the wine samples to allow this research. We also thank the judges who participated in the sensory analyses.

References

  1. 1.
    Somers TC (1971) The polymeric nature of wine pigments. Phytochemistry 10:2175–2186CrossRefGoogle Scholar
  2. 2.
    Guinard JX, Pangborn RM, Lewis MJ (1986) Preliminary studies on acidity-astringency interactions in model solutions and wines. J Sci Food Agric 37:811–817CrossRefGoogle Scholar
  3. 3.
    Lea AGH, Arnold GM (1978) The phenolics of ciders: bitterness and astringency. J Sci Food Agric 29:478–483CrossRefGoogle Scholar
  4. 4.
    McRae JM, Kennedy JA (2011) Wine and grape tannin interactions with salivary proteins and their impact on astringency: a review of current research. Molecules 16:2348–2364CrossRefGoogle Scholar
  5. 5.
    Gawel R (1998) Red wine astringency: a review. Aust J Grape Wine Res 4:73–95CrossRefGoogle Scholar
  6. 6.
    McRae JM, Falconer RJ, Kennedy JA (2010) Thermodynamics of grape and wine tannin interaction with polyproline: implications for red wine astringency. J Agric Food Chem 58:12510–12518CrossRefGoogle Scholar
  7. 7.
    Obreque-Slíer E, Peña-Neira Á, López-SolíS R (2010) Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol. J Agric Food Chem 58:3729–3735CrossRefGoogle Scholar
  8. 8.
    Vidal S, Francis L, Guyot S, Marnet N, Kwiatkowski M, Gawel R, Cheynier V, Waters EJ (2003) The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. Food Chem 83:564–573Google Scholar
  9. 9.
    Chira K, Pacella N, Jourdes M, Teissedre PL (2011) Chemical and sensory evaluation of Bordeaux wines (Cabernet-Sauvignon and Merlot) and correlation with wine age. Food Chem 126:1971–1977CrossRefGoogle Scholar
  10. 10.
    Kallithraka S, Kim D, Tsakiris A, Paraskevopoulos I, Soleas G (2011) Sensory assessment and chemical measurement of astringency of Greek wines: correlations with analytical polyphenolic composition. Food Chem 126:1953–1958CrossRefGoogle Scholar
  11. 11.
    Aron PM, Kennedy JA (2007) Compositional investigation of phenolic polymers isolated from Vitis vinifera L. Cv. Pinot Noir during fermentation. J Agric Food Chem 55:5670–5680CrossRefGoogle Scholar
  12. 12.
    Glabasnia A, Hofmann T (2006) Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in bourbon whiskey and oak-matured red wines. J Agric Food Chem 54:3380–3390CrossRefGoogle Scholar
  13. 13.
    Chira K, Schmauch G, Saucier C, Fabre S, Teissedre PL (2009) Grape variety effect on proanthocyanidin composition and sensory perception of skin and seed tannin extracts from bordeaux wine grapes (Cabernet Sauvignon and Merlot) for two consecutive vintages (2006 and 2007). J Agric Food Chem 57:545–553CrossRefGoogle Scholar
  14. 14.
    Chira K, Lorrain B, Ky I, Teissedre PL (2011) Tannin composition of cabernet-sauvignon and merlot grapes from the bordeaux area for different vintages (2006 to 2009) and comparison to tannin profile of five 2009 vintage mediterranean grapes varieties. Molecules 16:1519–1532CrossRefGoogle Scholar
  15. 15.
    Sun B, Spranger I, Roque-do-Vale F, Leandro C, Belchior P (2001) Effect of different winemaking technologies on phenolic composition in Tinta Miú da red wines. J Agric Food Chem 49:5809–5816CrossRefGoogle Scholar
  16. 16.
    Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. Am J Enol Vitic 57:257–268Google Scholar
  17. 17.
    Cheynier V, Rigaud J, Souquet JM, Barillere JM, Moutounet M (1989) Effect of pomace contact and hyperoxidation on the phenolic composition and quality of Grenache and Chardonnay wines. Am J Enol Vitic 40:36–42Google Scholar
  18. 18.
    Hernanz D, Gallo V, Recamales AF, Meléndez-Martínez AJ, González-Miret ML, Heredia FJ (2009) Effect of storage on the phenolic content, volatile composition and colour of white wines from the varieties Zalema and Colombard. Food Chem 113:530–537CrossRefGoogle Scholar
  19. 19.
    González-del Pozo A, Arozarena Í, Noriega M-J, Navarro M, Casp A (2010) Short- and long-term effects of micro-oxygenation treatments on the colour and phenolic composition of a Cabernet Sauvignon wine aged in barrels and/or bottles. Eur Food Res Technol 231:589–601CrossRefGoogle Scholar
  20. 20.
    Boulton R (2001) The copigmentation of anthocyanins and its role in the color of red wine: a critical review. Am J Enol Vitic 52:67–87Google Scholar
  21. 21.
    López N, Puértolas E, Hernández-Orte P, Álvarez I, Raso J (2009) Effect of a pulsed electric field treatment on the anthocyanins composition and other quality parameters of Cabernet Sauvignon freshly fermented model wines obtained after different maceration times. LWT Food Sci Technol 42(7):1225–1231CrossRefGoogle Scholar
  22. 22.
    Drinkine J, Lopes P, Kennedy JA, Teissedre PL, Saucier C (2007) Analysis of ethylidene-bridged flavan-3-ols in wine. J Agric Food Chem 55:1109–1116CrossRefGoogle Scholar
  23. 23.
    Guillen DA, Palma M, Natera R, Romero R, Barroso CG (2005) Determination of the age of Sherry wines by regression techniques using routine parameters and phenolic and volatile compounds. J Agric Food Chem 53:2412–2417CrossRefGoogle Scholar
  24. 24.
    OIV (1994) Compendium of international methods of analysis of spirituos drinks, alcohols and aroma compounds of drink. Off Int Vigne Vin Paris 123–124Google Scholar
  25. 25.
    Minussi RC, Rossi M, Bologna L, Cordi L, Rotilio D, Pastore GM, Durán N (2003) Phenolic compounds and total antioxidant potential of commercial wines. Food Chem 82:409–416CrossRefGoogle Scholar
  26. 26.
    Glories Y (1984) La couleur des vins rouges. II. Mesure, origine et interprétation. Conn Vigne et Vin 18:253–271Google Scholar
  27. 27.
    Sudraud P (1958) Interpétation des courbes d’absorption des vins rouges. Ann Technol Agric 7:203–208Google Scholar
  28. 28.
    Ribereau-Gayon P, Stonestreet E (1966) Dosage des tanins du vin rouge et detérmination de leur structure. Chimie Anal 48:188–196Google Scholar
  29. 29.
    Gómez-Cordovés C, González-SanJosé ML (1995) Interpretation of color variables during the aging of red wines: relationship with families of phenolic compounds. J Agric Food Chem 43:557–561CrossRefGoogle Scholar
  30. 30.
    Monagas M, Martín-Álvarez PJ, Gómez-Cordovés C, Bartolomé B (2007) Effect of the modifier (Graciano vs. Cabernet sauvignon) on blends of Tempranillo wine during ageing in the bottle. II. Colour and overall appreciation. LWT Food Sci Technol 40:107–115CrossRefGoogle Scholar
  31. 31.
    Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (1998) Traité d’oenologie 2. Chimie du vin stabilisation et traitements. Dunod edn, ParisGoogle Scholar
  32. 32.
    Mateus N, Oliveira J, Santos-Buelga C, Silva AMS, De Freitas APV (2004) NMR structure characterization of a new vinylpyranoanthocyanin-catechin pigment (a portisin). Tetrahedron Lett 45:3455–3457CrossRefGoogle Scholar
  33. 33.
    Fernandez K, Kennedy JA, Agosin E (2007) Characterization of Vitis vinifera L. Cv. Carménère grape and wine proanthocyanidins. J Agric Food Chem 55:3675–3680CrossRefGoogle Scholar
  34. 34.
    Sun B, Leandro CÃo, Ricardo da Silva JM, Spranger I (1998) Separation of grape and wine proanthocyanidins according to their degree of polymerization. J Agric Food Chem 46:1390–1396CrossRefGoogle Scholar
  35. 35.
    Monagas M, Gomez-Cordoves C, Bartolome B, Laureano O, Ricardo Da Silva JM (2003) Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon. J Agric Food Chem 51:6475–6481CrossRefGoogle Scholar
  36. 36.
    Maury C, Sarni-Manchado P, Lefebvre S, Cheynier V, Moutounet M (2001) Influence of fining with different molecular weight gelatins on proanthocyanidin composition and perception of wines. Am J Enol Vitic 52:140–145Google Scholar
  37. 37.
    Picinelli A, Bakker J, Bridle P (1994) Model wine solutions: effect of sulphur dioxide on colour and composition during ageing. Vitis 33:31–35Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kleopatra Chira
    • 1
  • Michael Jourdes
    • 1
  • Pierre-Louis Teissedre
    • 1
    Email author
  1. 1.Unité de Recherche Œnologie, EA 4577, USC 1219 INRA, Faculté d’Œnologie, Institut des Sciences de la Vigne et du VinUniversité Bordeaux SegalenVillenave d’Ornon CedexFrance

Personalised recommendations