European Food Research and Technology

, Volume 232, Issue 5, pp 821–827 | Cite as

Thermal inactivation of Alicyclobacillus acidoterrestris spores under conditions simulating industrial heating processes of tangerine vesicles and its use in time temperature integrators

  • María-Dolores López
  • Presentación García
  • Marina Muñoz-Cuevas
  • Pablo S. Fernández
  • Alfredo Palop
Original Paper

Abstract

The aim of the present study was to characterize the thermal inactivation of Alicyclobacillus acidoterrestris spores under isothermal and non-isothermal conditions simulating industrial heating processes applied to tangerine vesicles. A microbiological time temperature integrator (TTI) suitable for estimating the severity of thermal processes applied to acid foods was also developed. The heat resistance of A. acidoterrestris was characterized by D105 °C = 0.63 min and z = 10.8 °C in tangerine juice, showing linear survival curves, without shoulders and tails. Under non-isothermal conditions, the use of isothermal data allowed for an accurate prediction of the inactivation. The spores were included in alginate TTIs and they were used to estimate the severity of thermal treatments applied both in a thermoresistometer Mastia and in a food pilot plant scale system, which allows fast heating of the product to 93 °C and then a short holding time (2 min). In the thermoresistometer, tangerine juice was used as heating medium. In the food pilot plant scale system, thermal treatments were applied in batch to unpackaged tangerine vesicles. In both equipments, the TTIs accurately predicted the lethality of the thermal treatments applied. The percent coefficients of variation for survivor counting in TTIs showed that distribution of heat is homogeneous both in the thermoresistometer and in the reactor, being lower than 10% in all cases. The logistic and normal distributions were found to be the best for fitting the different survivor datasets.

Keywords

Alicyclobacillus acidoterrestris Time temperature integrators Heat treatment Heat resistance Tangerine juice 

References

  1. 1.
    Feliciotti E, Esselen WB (1957) Thermal destruction rates of thiamine in puréed meats and vegetables. Food Technol 11:77–84Google Scholar
  2. 2.
    Stumbo CR (1973) Thermobacteriology in food processing, 2nd edn. Academic Press, New YorkGoogle Scholar
  3. 3.
    García P (2006) Optimización y modelización del procesado aséptico HTST (High Temperature Short Time) y su aplicación al cremogenado de fresa. PhD thesis. Technical University of Cartagena, CartagenaGoogle Scholar
  4. 4.
    van Zuijlen A, Periago PM, Amézquita A, Palop A, Brul S, Fernández PS (2010) Characterization of Bacillus sporothermodurans IC4 spores; putative indicator microorganism for optimization of thermal processes in food sterilization. Food Res Int 43:1895–1901CrossRefGoogle Scholar
  5. 5.
    Martínez A, Rodrigo D, Fernández PS, Ocio MJ (2006) Time-temperature integrators for thermal process evaluation. In: Sun DW (ed) Thermal food processing. New technologies and quality issues. CRC Press, Boca Raton FLGoogle Scholar
  6. 6.
    van Loey A, Haentjens T, Scout C, Hendrickx E (1999) Enzymic time-temperature integrators for the quantification of thermal process in terms of food safety. In: Oliveira FAR, Oliveira JC (eds) Processing foods. CRC Press, LondonGoogle Scholar
  7. 7.
    Brown KL, Ayres CA, Gaze JE, Newman ME (1984) Thermal destruction of bacterial spores immobilized in food alginate particles. Food Microbiol 1:187–198CrossRefGoogle Scholar
  8. 8.
    Dallyn H, Falloon WC, Bean PG (1977) Method for the immobilization of bacterial spores in alginate gel. Lab Practice 26:773–775Google Scholar
  9. 9.
    Ocio MJ, Fernández PS, Rodrigo F, Periago P, Martínez A (1997) A time temperature integrator for particulated foods: thermal process evaluation. Z Lebensm Unters Forsch 205:325–328CrossRefGoogle Scholar
  10. 10.
    Pflug IJ, Odlaug TE (1986) Biological indicators in the pharmaceutical and medical device industry. J Parenter Sci Technol 40:242–248Google Scholar
  11. 11.
    Pettipher GL, Osmundson ME, Murphy JM (1997) Methods for the detection and enumeration of Alicyclobacillus acidoterrestris and investigation of growth and production of taint in fruit juices and fruit juice-containing drinks. Lett Appl Microbiol 24:185–189CrossRefGoogle Scholar
  12. 12.
    Splittstoesser DF, Lee CY, Churey JJ (1998) Control of Alicyclobacillus acidoterrestris in the juice industry. Dairy Food Environ Sanitation 18:585–587Google Scholar
  13. 13.
    Conesa R, Andreu S, Fernández PS, Esnoz A, Palop A (2009) Non-isothermal heat resistance determinations with the thermoresistometer Mastia. J Appl Microbiol 107:506–513CrossRefGoogle Scholar
  14. 14.
    Silva VM, Gibbs P (2001) Alicyclobacillus acidoterrestris spore in fruit products and design of pasteurisation processes. Trends Food Sci Technol 12:68–74CrossRefGoogle Scholar
  15. 15.
    Durak MZ, Churey JJ, Danyluk MD, Worobo MW (2010) Identification and haplotype distribution of Alicyclobacillus spp. from different juices and beverages. Int J Food Microbiol 142:286–291CrossRefGoogle Scholar
  16. 16.
    Wisse CA, Parish ME (1998) Isolation and enumeration of sporeforming, thermoacidophilic, rod-shaped bacteria from citrus processing environments. Dairy Food Environ Sanitation 18:504–509Google Scholar
  17. 17.
    Dawson RMC, Elliot DC, Elliot WH, Jones KM (1974) Data for biochemical research. Oxford at the Clarendon Press, OxfordGoogle Scholar
  18. 18.
    Francois K, Devlieghere F, Smet K, Standaert AR, Geeraerd AH, Van Impe JF, Debevere J (2005) Modeling the individual cell lag phase: effect of temperature and pH on the individual cell lag distribution of Listeria monocytogenes. Int J Food Microbiol 100:41–53CrossRefGoogle Scholar
  19. 19.
    Ceviz G, Tulek Y, Con AH (2009) Thermal resistance of Alicyclobacillus acidoterrestris spores in different heating media. Int J Food Sci Technol 44:1770–1777CrossRefGoogle Scholar
  20. 20.
    Eiroa MNU, Junqueira VCA, Schmidt FL (1999) Alicyclobacillus in orange juice: occurrence and heat resistance of spores. J Food Prot 62:883–886Google Scholar
  21. 21.
    Komitopoulou E, Boziaris IS, Davies EA, Delves-Broughton J, Adams MR (1999) Alicyclobacillus acidoterrestris in fruit juices and its control by nisin. Int J Food Sci Technol 34:81–85CrossRefGoogle Scholar
  22. 22.
    Pontius AJ, Rushing JE, Foegeding PM (1998) Heat resistance of Alicyclobacillus acidoterrestris spores as affected by various pH values and organic acids. J Food Prot 61:41–46Google Scholar
  23. 23.
    Silva FM, Gibbs P, Vieira MC, Silva CLM (1999) Thermal inactivation of Alicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit processes. Int J Food Microbiol 51:95–103CrossRefGoogle Scholar
  24. 24.
    Yamakazi K, Isoda C, Tedzuka H, Hawai Y, Shinano H (1997) Thermal resistance and prevention of spoilage bacterium, Alicyclobacillus acidoterrestris, in acidic beverages. J Jpn Soc Food Sci Technol 44:905–911Google Scholar
  25. 25.
    Bahçeci KS, Acar J (2007) Modeling the combined effects of pH, temperature and ascorbic acid concentration on the heat resistance of Alicyclobacillus acidoterrestris. Int J Food Microbiol 120:266–273CrossRefGoogle Scholar
  26. 26.
    Cameron MS, Leonard SJ, Barret EL (1980) Effects of moderately acidic pH on heat resistance of Clostridium sporogenes spores in phosphate buffer and in buffered pea puree. Appl Environ Microbiol 39:943–949Google Scholar
  27. 27.
    Ocio MJ, Sánchez T, Fernández PS, Rodrigo M, Martínez A (1994) Thermal resistance characteristics of PA3679 in the temperature range of 110–121 °C as affected by pH, type of acidulant and substrate. Int J Food Microbiol 22:239–247CrossRefGoogle Scholar
  28. 28.
    Palop A, Raso J, Pagán R, Condón S, Sala FJ (1999) Influence of pH on the heat resistance of Bacillus coagulans in buffer and homogenised foods. Int J Food Microbiol 46:243–249CrossRefGoogle Scholar
  29. 29.
    Duffy S, Churey J, Worobo RW, Schaffner DW (2000) Analysis and modeling of the variability associated with UV inactivation of Escherichia coli in apple cider. J Food Prot 63:1587–1590Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • María-Dolores López
    • 1
  • Presentación García
    • 1
  • Marina Muñoz-Cuevas
    • 2
  • Pablo S. Fernández
    • 2
  • Alfredo Palop
    • 2
  1. 1.Department of TechnologyFood and Canning National Technology CentreMurciaSpain
  2. 2.Department of Food Engineering and Agricultural MachineryTechnical University of CartagenaCartagenaSpain

Personalised recommendations