European Food Research and Technology

, Volume 232, Issue 4, pp 637–646 | Cite as

α 67-106 of bovine hemoglobin: a new family of antimicrobial and angiotensin I-converting enzyme inhibitory peptides

  • Estelle Yaba Adje
  • Rafik Balti
  • Mostafa kouach
  • Didier Guillochon
  • Naïma Nedjar-Arroume
Original Paper

Abstract

Protein hydrolysates are of a significant interest, due to their potential application as a source of bioactive peptides in nutraceutical and pharmaceutical domains. The present study was focused on bovine hemoglobin hydrolysate obtained with pig pepsin in the presence of 30% ethanol. This hydrolysate was fractioned by reversed-phase high-performance liquid chromatography (RP-HPLC) into 12 major fractions (F1–F12). All fractions were analyzed by ESI/MS and ESI/MS/MS, in order to characterize and identify the peptides in these fractions. This hydrolysis permitted to generate a new serial of bioactive peptides with both antimicrobial and ACE inhibitory activities. Identified peptides were TKAVEHLDDLPGALSELSDLHAHKLRVDPVNFKLLSHSLL, LDDLPGALSELSDLHAHKLRVDPVNFKLLSHSL, KLLSHSL, and LLSHSL corresponding respectively to the 67-106, 73-105, 99-105, and 100-105 fragments of the α chain of bovine hemoglobin. They were the first found from bovine hemoglobin. These purified peptides have an antibacterial activity against four bacteria strains: Kocuria luteus A270, Listeria innocua, Escherichia coli, and Staphylococcus aureus with a MIC between 187.1 and 35.2 μM. On the other hand, these peptides displayed at the same time ACE inhibitory activity with an IC50 range from 42.55 to 1,095 μM.

Keywords

Bovine hemoglobin Hydrolysis Antimicrobial peptides ACE inhibitory activity 

Abbreviations

ESI/MS

Electrospray ionization mass spectrometry

ESI/MS/MS

Electrospray ionization tandem mass spectrometry

RP-HPLC

Reversed-phase high-performance liquid chromatography

DH

Degree of hydrolysis

HHL

Hippuryl-l-histidyl-l-leucine

HA

Hippuric acid

ACE

Angiotensin I-converting enzyme

References

  1. 1.
    Mito K, Fujii M, Kuwahara M, Matsumura N, Shimizu T, Sugano S, Karaki H (1996) Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides derived from hemoglobin. Eur J Pharmacol 304:93–98CrossRefGoogle Scholar
  2. 2.
    Froidevaux R, Krier F, Nedjar-Arroume N, Vercaigne-Marko D, Kosciarz E, Ruckebusch C, Dhulster P, Guillochon D (2001) Antibacterial activity of a pepsin-derived bovine hemoglobin fragment. FEBS Lett 491:159–163CrossRefGoogle Scholar
  3. 3.
    Daoud R, Dubois V, Bors-Dodita L, Nedjar-Arroume N, Krier F, Chihib NE, Mary P, Kouach M, Briand G, Guillochon D (2005) New antibacterial peptide derived from bovine hemoglobin. Peptides 26:713–719CrossRefGoogle Scholar
  4. 4.
    Nedjar-Arroume N, Dubois-Delval V, Miloudi K, Daoud R, Krier F, Kouach M, Briand G, Guillochon D (2006) Isolation and characterization of four antibacterial peptides from bovine hemoglobin. Peptides 27:2082–2089CrossRefGoogle Scholar
  5. 5.
    Yu Y, Hu J, Miyaguchi Y, Bai X, Du Y, Lin B (2006) Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin. Peptides 27:2950–2956CrossRefGoogle Scholar
  6. 6.
    Nedjar-Arroume N, Dubois-Delval V, Adje EY, Traisnel J, Krier F, Mary P, Kouach M, Briand G, Guillochon D (2008) Bovine hemoglobin: an attractive source of antibacterial peptides. Peptides 29:969–977CrossRefGoogle Scholar
  7. 7.
    Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55CrossRefGoogle Scholar
  8. 8.
    Hong F, Ming L, Yi S, Zhanxia L, Yongquan W, Chi L (2008) The antihypertensive effect of peptides: a novel alternative to drugs? Peptides 29:1062–1071CrossRefGoogle Scholar
  9. 9.
    Nielsen PM, Peterson D, Dambmann C (2001) Improved method for determining food protein degree of hydrolysis. J Food Sci 66:642–646CrossRefGoogle Scholar
  10. 10.
    Zhao QY, Piot JM, Gautier V, Cottenceau G (1996) Peptic peptide mapping by HPLC, on line with photodiode array detection, of a haemoglobin hydrolysate produced at pilot-plant scale from an ultrafiltration process. Appl Microbiol Biotechnol 45:778–784CrossRefGoogle Scholar
  11. 11.
    Parish CA, Jiang H, Tokiwa Y, Berova N, Nakanishi K, Mc Cabe D, Zuckerman W, Xia MM, Gabay JE (2001) Broad-spectrum antimicrobial activity of hemoglobin. Bioorg Med Chem 9:377–382CrossRefGoogle Scholar
  12. 12.
    Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T (1995) Purification and characterization of angiotensin I-converting-enzyme inhibitors from sour milk. J Dairy Sci 78:777–783CrossRefGoogle Scholar
  13. 13.
    Strub JM, Goumon Y, Lugardon K, Capon C, Lopez M, Moniatte M, Van Dorsselaer A, Aunis D, Metz-Boutigue MH (1996) Antibacterial activity of glycosylated and phosphorylated chromogranin α-derived peptide 173–194 from bovine adrenal medullary chromaffin granules. J Biol Chem 271:28533–28540CrossRefGoogle Scholar
  14. 14.
    Dathe M, Schumann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzaki K, Murase O, Bienert M (1996) Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry 35:12612–12620CrossRefGoogle Scholar
  15. 15.
    Duncan DB (1955) Multiple and multiple F test. Biometrics 11:1–42CrossRefGoogle Scholar
  16. 16.
    Kristinsson HG, Rasco BA (2000) Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. J Agric Food Chem 48:657–666CrossRefGoogle Scholar
  17. 17.
    Su RX, Qi W, He ZM (2007) Time-dependent nature in peptic hydrolysis of native bovine hemoglobin. Eur Food Res Technol 225:637–647CrossRefGoogle Scholar
  18. 18.
    Powers JPS, Hancock REW (2003) The relationship between peptide structure and bacterial activity. Peptides 24:1681–1691CrossRefGoogle Scholar
  19. 19.
    Hancock RE, Rozek A (2002) Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206:143–149CrossRefGoogle Scholar
  20. 20.
    Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250CrossRefGoogle Scholar
  21. 21.
    Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395CrossRefGoogle Scholar
  22. 22.
    Marynka KS, Rotem I, Portnaya U, Cogan Mor A (2007) In vitro discriminative antipseudomonal properties resulting from acyl substitution of N-terminal sequence of dermaseptin s4 derivatives. Chem Biol 14:75–85CrossRefGoogle Scholar
  23. 23.
    Wu M, Maier E, Benz R, Hancock RE (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38:7235–7242CrossRefGoogle Scholar
  24. 24.
    Andreu D, Rivas L (1998) Animal antimicrobial peptides: an overview. Biopolymers 47:415–433CrossRefGoogle Scholar
  25. 25.
    Nishikata MT, Kanehira H, Oh H, Tani M, Tazaki Kuboki Y (1991) Salivary histatin as an inhibitor of a protease produced by the oral bacterium Bacteroides gingivalis. Biochem Biophys Res Commun 174:625–663CrossRefGoogle Scholar
  26. 26.
    Meisel H (1997) Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers 43:119–128CrossRefGoogle Scholar
  27. 27.
    Wu J, Ding X (2001) Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. J Agric Food Chem 49:501–506CrossRefGoogle Scholar
  28. 28.
    Wu J, Aluko RE, Nakai S (2006) Structural requirements of angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship study of di- and tripeptides. J Agric Food Chem 54:732–738CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Li B, Dong S, Liu Z, Zhao X, Wang J, Zeng M (2009) A novel ACE inhibitory peptide isolated from Acaudina molpadioidea hydrolysate. Peptides 30:1028–1033CrossRefGoogle Scholar
  30. 30.
    Balti R, Nedjar-Arroume N, Adjé YE, Guillochon D, Nasri M (2010) Analysis of novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of Cuttlefish (Sepia officinalis) muscle proteins. J Agric Food Chem 58:3840–3846CrossRefGoogle Scholar
  31. 31.
    Lu J, Ren DF, Xue YL, Sawano Y, Miyakawa T, Tanokura M (2010) Isolation of an antihypertensive peptide from alcalase digest of Spirulina platensis. J Agric Food Chem 58:7166–7171CrossRefGoogle Scholar
  32. 32.
    Cao W, Zhang C, Hong P, Ji H, Hao J (2010) Purification and identification of an ACE inhibitory peptide from the peptic hydrolysate of Acetes chinensis and its antihypertensive effects in spontaneously hypertensive rats. Int J Food Sci Technol 45:959–965CrossRefGoogle Scholar
  33. 33.
    Balti R, Nedjar-Arroume N, Bougatef A, Guillochon D, Nasri M (2010) Three novel angiotensin I converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) using digestive proteases. Food Res Int 43:1136–1143CrossRefGoogle Scholar
  34. 34.
    Wang Z, Wang G (2004) APD: The antimicrobial peptide database. Nucleic Acids Res 32:D590–D592CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Estelle Yaba Adje
    • 1
  • Rafik Balti
    • 1
    • 2
  • Mostafa kouach
    • 3
  • Didier Guillochon
    • 1
  • Naïma Nedjar-Arroume
    • 1
  1. 1.Laboratoire de Procédés BiologiquesGénie Enzymatique et MicrobienVilleneuve d’Ascq CedexFrance
  2. 2.Laboratoire de Génie Enzymatique et de MicrobiologieEcole Nationale d’Ingénieurs de SfaxSfaxTunisia
  3. 3.Laboratoire d’Application de Spectrométrie de Masse, Service Commun de Physicochimie, Faculté de Médecine H. WarembourgPôle RecherchePlace de Verdun, Lille IIFrance

Personalised recommendations