European Food Research and Technology

, Volume 232, Issue 2, pp 211–220 | Cite as

Stability of polyphenolic extracts from grape seeds after thermal treatments

  • Gabriel Davidov-Pardo
  • Iñigo Arozarena
  • María R. Marín-Arroyo
Original paper


Five commercial grape seed extracts (GSEs) were put under pasteurisation (HTST and LTLT), cooking, baking and sterilisation conditions. After each treatment, the tannin content, antioxidant activity, browning and characteristics of eight phenolic compounds were determined. For nearly all quantified parameters, significant differences (p < 0.05) were found between at least two treatments. The gallic acid, gallocatechin and browning parameters showed a greater tendency to increase in the treatments, and the antioxidant activity showed a greater tendency to decrease. A positive correlation between the tannin content and browning and a negative correlation between the gallic acid and antioxidant activity were found. The GSEs were clearly grouped based on their composition; nevertheless, a grouping based on the treatments did not exist. It can be concluded that the thermal treatments affected the stability of all GSEs in a different manner depending on the phenolic profile of each extract.


Polyphenols Grape seed Thermal treatments Antioxidant activity Flavan-3-ols 



Grape seed extract


Gallic acid


Procyanidin B1


Procyanidin B2








Epicatechin gallate




Epigallocatechin gallate


Total phenolic content


Tannin content


Antioxidant activity


Browning absorbance at 420 nm



Nutraland (China), HongJiu Biotech (China), Ethical Natural (USA), Exxentia (Spain) and Bioserae (France) for kindly providing the samples. This work was partially financed by the Mexican Science and Technology Council (CONACYT) and by the Public University of Navarra (Spain).


  1. 1.
    Murcia MA, Vera AM, Martínez-Tomé M, Frega N (2003) Sustancias antioxidantes presentes en los alimentos. Acción, dosis y su eficacia en la promoción de la salud. Nutrición y salud: Nuevos alimentos para nuevas necesidades. Nueva Imprenta S.A, MadridGoogle Scholar
  2. 2.
    Shi J, Yu J, Pohorly JE, Kakuda Y (2003) Polyphenolics in grape seeds: biochemistry and functionality. J Med Food 6(4):291–299CrossRefGoogle Scholar
  3. 3.
    Martínez-Flórez S, González-Gallego J, Culebras JM, Tuñón MJ (2002) Los flavonoides: Propiedades y acciones antioxidantes. Nutrición Hospitalaria 17(6):271–278Google Scholar
  4. 4.
    Yamakoshi J, Kataoka S, Koga T, Ariga T (1999) Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 142(1):139–149CrossRefGoogle Scholar
  5. 5.
    Kar P, Laight D, Shaw KM, Cummings MH (2006) Flavonoid-rich grape seed extracts: a new approach in high cardiovascular risk patients? Int J Clin Pract 60(11):1484–1492CrossRefGoogle Scholar
  6. 6.
    Valenzuela A (2004) Tea consumption and health: beneficial characteristics and properties of this ancient beverage. Rev Chil Nutr 31(2):72–82Google Scholar
  7. 7.
    Makris DP, Boskou G, Andrikopoulos NK (2007) Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures. Bioresour Technol 98(15):2963–2967CrossRefGoogle Scholar
  8. 8.
    Negro C, Tommasi L, Miceli A (2003) Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour Technol 87(1):41–44CrossRefGoogle Scholar
  9. 9.
    Pastrana-Bonilla E, Akoh CC, Subramani S, Krewer G (2003) Phenolic content and antioxidant capacity of muscadine grapes. J Agric Food Chem 51(18):5497–5503CrossRefGoogle Scholar
  10. 10.
    Cosme F, Ricardo-Da-Silva JM, Laureano O (2009) Tannin profiles of vitis vinifera l. Cv. Red grapes growing in lisbon and from their monovarietal wines. Food Chem 112(1):197–204CrossRefGoogle Scholar
  11. 11.
    Guendez R, Kallithraka S, Makris DP, Kefalas P (2005) Determination of low molecular weight polyphenolic constituents in grape (vitis vinifera sp.) seed extracts: correlation with antiradical activity. Food Chem 89(1):1–9CrossRefGoogle Scholar
  12. 12.
    Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57(3):257–268Google Scholar
  13. 13.
    Hatzidimitriou E, Nenadis N, Tsimidou MZ (2007) Changes in the catechin and epicatechin content of grape seeds on storage under different water activity (aw) conditions. Food Chem 105(4):1504–1511CrossRefGoogle Scholar
  14. 14.
    Bazinet L, Araya-Farias M, Doyen A, Trudel D, Têtu B (in press) Effect of process unit operations and long-term storage on catechin contents in egcg-enriched tea drink. Food Res Intl (Corrected Proof). doi: 10.1016/j.foodres.2010.05.015
  15. 15.
    Wang R, Zhou W, Wen RAH (2006) Kinetic study of the thermal stability of tea catechins in aqueous systems using a microwave reactor. J Agric Food Chem 54(16):5924–5932CrossRefGoogle Scholar
  16. 16.
    Manzocco L, Anese M, Nicoli MC (1998) Antioxidant properties of tea extracts as affected by processing. LWT Food Sci Technol 31(7–8):694–698Google Scholar
  17. 17.
    Hartmann A, Patz C-D, Andlauer W, Dietrich H, Ludwig M (2008) Influence of processing on quality parameters of strawberries. J Agric Food Chem 56(20):9484–9489CrossRefGoogle Scholar
  18. 18.
    Rakic S, Povrenovic D, Tesevic V, Simic M, Maletic R (2006) Oak acorn, polyphenols and antioxidant activity in functional food. J Food Eng 74(3):416–423CrossRefGoogle Scholar
  19. 19.
    Van Der Sluis AA, Dekker M, Van Boekel MAJS (2005) Activity and concentration of polyphenolic antioxidants in apple juice. 3. Stability during storage. J Agric Food Chem 53(4):1073–1080CrossRefGoogle Scholar
  20. 20.
    Gliszczyska-wigo A, Ciska E, Pawlak-Lemaska K, Chmielewski J, Borkowski T, Tyrakowska B (2006) Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit Contam Part A 23(11):1088–1098CrossRefGoogle Scholar
  21. 21.
    Huang YC, Chang YH, Shao YY (2006) Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food Chem 98(3):529–538CrossRefGoogle Scholar
  22. 22.
    Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50(10):3010–3014CrossRefGoogle Scholar
  23. 23.
    Wang R, Zhou W (2004) Stability of tea catechins in the breadmaking process. J Agric Food Chem 52(26):8224–8229CrossRefGoogle Scholar
  24. 24.
    Patashnik M (1953) A simplified procedure for thermal process calculation. Food Technol 7(1):1–6Google Scholar
  25. 25.
    Mishkin M, Saguy I (1982) Thermal stability of pomegranate juice. Z Lebensm-Unters Forsch 175(6):410–412CrossRefGoogle Scholar
  26. 26.
    EEC (1990) Commission Regulation (EEC) No 2676/90 determining Community methods for the analysis of wine, pp 178–179Google Scholar
  27. 27.
    Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. In: Lawton JH, Likens GE (eds) Methods in ecology. Blackwell, OxfordGoogle Scholar
  28. 28.
    Rivero-Pérez MD, Muñiz P, González-Sanjosé ML (2007) Antioxidant profile of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies. J Agric Food Chem 55(14):5476–5483CrossRefGoogle Scholar
  29. 29.
    Vaikousi H, Koutsoumanis K, Biliaderis CG (2008) Kinetic modelling of non-enzymatic browning of apple juice concentrates differing in water activity under isothermal and dynamic heating conditions. Food Chem 107(2):785–796CrossRefGoogle Scholar
  30. 30.
    Vivas N, Nonier MF, V ivas De Gaulejac N, Absalon C, Bertrand A, Mirabel M (2004) Differentiation of proanthocyanidin tannins from seeds, skins and stems of grapes (vitis vinifera) and heartwood of quebracho (schinopsis balansae) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and thioacidolysis/liquid chromatography/electrospray ionization mass spectrometry. Anal Chim Acta 513(1):247–256CrossRefGoogle Scholar
  31. 31.
    De Freitas VAP, Glories Y (1999) Concentration and compositional changes of procyanidins in grape seeds and skin of white vitis vinifera varieties. J Sci Food Agric 79(12):1601–1606CrossRefGoogle Scholar
  32. 32.
    Zhu QY, Zhang A, Tsang D, Huang Y, Chen Z-Y (1997) Stability of green tea catechins. J Agric Food Chem 45(12):4624–4628CrossRefGoogle Scholar
  33. 33.
    Zhu QY, Holt RR, Lazarus SA, Ensunsa JL, Hammerstone JF, Schmitz HH, Keen CL (2002) Stability of the flavan-3-ols epicatechin and catechin and related dimeric procyanidins derived from cocoa. J Agric Food Chem 50(6):1700–1705CrossRefGoogle Scholar
  34. 34.
    Wang R, Zhou W, Jiang X (2008) Mathematical modeling of the stability of green tea catechin epigallocatechin gallate (EGCG) during bread baking. J Food Eng 87(4):505–513CrossRefGoogle Scholar
  35. 35.
    Wang H, Helliwell K (2000) Epimerisation of catechins in green tea infusions. Food Chem 70(3):337–344CrossRefGoogle Scholar
  36. 36.
    Guo Q, Zhao B, Shen S, Hou J, Hu J, Xin W (1999) Esr study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochim Biophys Acta 1427(1):13–23Google Scholar
  37. 37.
    Summa C, Raposo FC, McCourt J, Scalzo RL, Wagner KH, Elmadfa I, Anklam E (2006) Effect of roasting on the radical scavenging activity of cocoa beans. Eur Food Res Technol 222(3–4):368–375CrossRefGoogle Scholar
  38. 38.
    Hagerman AE (2002) Tannin handbook. (1998–2002). Accessed 10 May 2009
  39. 39.
    Sandhu AK, Gu L (2010) Antioxidant capacity, phenolic content, and profiling of phenolic compounds in the seeds, skin, and pulp of vitis rotundifolia (muscadine grapes) as determined by HPLC-DAD-ESI-MSN. J Agric Food Chem 58(8):4681–4692CrossRefGoogle Scholar
  40. 40.
    Santos-Buelga C, Francia-Aricha EM, Escribano-Bailón MT (1995) Comparative flavan-3-ol composition of seeds from different grape varieties. Food Chem 53(2):197–201CrossRefGoogle Scholar
  41. 41.
    Piva A, Di Mattia C, Neri L, Dimitri G, Chiarini M, Sacchetti G (2008) Heat-induced chemical, physical and functional changes during grape must cooking. Food Chem 106(3):1057–1065CrossRefGoogle Scholar
  42. 42.
    Waterhouse AL, Ignelzi S, Shirley JR (2000) A comparison of methods for quantifying oligomeric proanthocyanidins from grape seed extracts. Am J Enol Vitic 51(4):383–389Google Scholar
  43. 43.
    Kim S, Jeong S, Park W, Nam KC, Ahn DU, Lee S (2006) Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chem 97(3):472–479CrossRefGoogle Scholar
  44. 44.
    Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans C (1995) Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 322(2):339–346CrossRefGoogle Scholar
  45. 45.
    Tabart J, Kevers C, Pincemail J, Defraigne JO, Dommes J (2009) Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem 113(4):1226–1233CrossRefGoogle Scholar
  46. 46.
    Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46(5):1887–1892CrossRefGoogle Scholar
  47. 47.
    Jayabalan R, Marimuthu S, Thangaraj P, Sathishkumar M, Binupriya AR, Swaminathan K, Sei EY (2008) Preservation of kombucha tea—effect of temperature on tea components and free radical scavenging properties. J Agric Food Chem 56(19):9064–9071CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Gabriel Davidov-Pardo
    • 1
  • Iñigo Arozarena
    • 1
  • María R. Marín-Arroyo
    • 1
  1. 1.Department of Food TechnologyPublic University of NavarreNavarreSpain

Personalised recommendations