European Food Research and Technology

, Volume 231, Issue 4, pp 623–634 | Cite as

Determination of the geographical origin of processed spice using multielement and isotopic pattern on the example of Szegedi paprika

  • Marion Brunner
  • Róbert Katona
  • Zsolt Stefánka
  • Thomas Prohaska
Original Paper

Abstract

This case study presents a fast and reliable method of combining strontium isotope ratios (87Sr/86Sr) with a multielement pattern (Rb, Sr, Y, Zr, Mo, Cd, Ba, Pb, Th, U, Mg, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As and rare earth elements) by means of inductively coupled plasma mass spectrometry (ICP-MS) to establish a unique fingerprint of authentic Szegedi Fűszerpaprika (PDO) and classify authentic and purchased paprika from different known, declared and unknown geographical origin using multivariate statistical tools (principal component and canonical discriminant analysis). Since paprika represents a processed spice, alterations in element and Sr isotopic composition throughout the production process were investigated. The Sr source in the final product was identified to stem from bioavailable Sr sources in soil. Therefore, the ammonium nitrate extract of a soil is sufficient to establish a Sr fingerprint for agricultural products of a region. As a consequence, the spice paprika can be traced back to its geographical origin even after processing.

Keywords

Food traceability Paprika Strontium isotope ratio (MC)-ICP-MS Multielement analyses Rare earth elements 

References

  1. 1.
    European Council Regulation No. 510/2006 (2006) Official Journal of the European Union, European Commission, BrusselsGoogle Scholar
  2. 2.
    Capo RC, Stewart BW (1998) Geoderma 82:197–225CrossRefGoogle Scholar
  3. 3.
    Bentley RA (2006) J Archeol Method Theory 13:135–187CrossRefGoogle Scholar
  4. 4.
    Aberg G (1995) Water Soil Air Pollut 79:309–322CrossRefGoogle Scholar
  5. 5.
    Pett-Ridge JC, Derry LA, Kurtz AC (2009) Geochim Cosmochim Acta 73:25–43CrossRefGoogle Scholar
  6. 6.
    Almeida CM, Vasconcelos MT (2001) J Anal At Spectrom 16:607–611CrossRefGoogle Scholar
  7. 7.
    Almeida CM, Vasconcelos MT (2004) Food Chem 85:7–12CrossRefGoogle Scholar
  8. 8.
    Ehrlich S, Gavrieli I, Dor LB, Halicz L (2001) J Anal At Spectrom 16:1389–1395CrossRefGoogle Scholar
  9. 9.
    Barbaste M, Robinson K, Guilfoyle S, Medina B, Lobinski R (2002) J Anal At Spectrom 17:135–137CrossRefGoogle Scholar
  10. 10.
    Fortunato G, Mumic K, Wunderli S, Pillonel L, Bosset JO, Gremaud G (2004) J Anal At Spectrom 19:227–234CrossRefGoogle Scholar
  11. 11.
    Brach-Papa C, Van Bocxstaele M, Ponzevera E, Quétel CR (2009) Spectrochim Acta Part B: At Spectrosc 64:229–234CrossRefGoogle Scholar
  12. 12.
    Swoboda S, Brunner M, Boulyga S, Galler P, Horacek M, Prohaska T (2008) Anal Bioanal Chem 390:487–494CrossRefGoogle Scholar
  13. 13.
    García-Ruiz S, Moldovan M, Fortunato G, Wunderli S, García Alonso JI (2007) Anal Chim Acta 590:55–66CrossRefGoogle Scholar
  14. 14.
    Rodushkin I, Bergman T, Douglas D, Engström E, Sörlin D, Baxter DC (2007) Anal Chim Acta 583:310–318CrossRefGoogle Scholar
  15. 15.
    Voerkelius S, Lorenz GD, Rummel S, Quétel CR, Heiss G, Baxter M, Brach-Papa C, Deters-Itzelsberger P, Hoelzl S, Hoogewerff J, Ponzevera E, Van Bocxstaele M, Ueckermann H (2009) Food Chem 118:933–940CrossRefGoogle Scholar
  16. 16.
    Montgomery J, Evans JA, Wildman G (2006) Appl Geochem 21:1626–1634CrossRefGoogle Scholar
  17. 17.
    Crittenden RG, Andrew AS, LeFournour M, Young MD, Middleton H, Stockmann R (2007) Int Dairy J 17:421–428CrossRefGoogle Scholar
  18. 18.
    Rummel S, Hoelzl S, Horn P, Rossmann A, Schlicht C (2010) Food Chem 118:890–900CrossRefGoogle Scholar
  19. 19.
    Cao X, Chen Y, Gu Z, Wang X (2000) Int J Environ Anal Chem 76:295–309CrossRefGoogle Scholar
  20. 20.
    Liang T, Zhang S, Wang L, Kung HT, Wang Y, Hu A, Ding S (2005) Environ Geochem Health 27:301–311CrossRefGoogle Scholar
  21. 21.
    Markert B, Zhang DL (1991) Sci Total Environ 103:27–35CrossRefGoogle Scholar
  22. 22.
    Benincasa C, Lewis J, Sindona G, Tagarelli A (2008) Food Chem 110:257–262CrossRefGoogle Scholar
  23. 23.
    Martino FA, Sánchez MF, Sanz-Medel A (2001) Anal Chim Acta 442:191–200CrossRefGoogle Scholar
  24. 24.
    Benincasa C, Lewis J, Perri E, Sindona G, Tagarelli A (2007) Anal Chim Acta 585:366–370CrossRefGoogle Scholar
  25. 25.
    Galgano F, Favati F, Caruso M, Scarpa T, Palma A (2008) LWT-Food Sci Technol 41:1808–1815CrossRefGoogle Scholar
  26. 26.
    González A, Llorens A, Cervera ML, Armenta S, De la Guardia M (2009) Food Chem 112:26–34CrossRefGoogle Scholar
  27. 27.
    Kment P, Mihaljevic M, Ettler V, Sebek O, Strnad L, Rohlová L (2005) Food Chem 91:157–165CrossRefGoogle Scholar
  28. 28.
    Serapinas P, Venskutonis PR, Aninkevicius V, Ezerinskis Z, Galdikas A, Juzikiene V (2008) Food Chem 107:1652–1660Google Scholar
  29. 29.
    Taylor VF, Longerich HP, Greenough JD (2003) J Agric Food Chem 51:856–860CrossRefGoogle Scholar
  30. 30.
    Baxter MJ, Crews HM, Dennis MJ, Goodall I, Anderson D (1997) Food Chem 60:443–450CrossRefGoogle Scholar
  31. 31.
    Castineira MdM, Feldmann I, Jakubowski N, Andersson JT (2004) J Agric Food Chem 52:2962–2974CrossRefGoogle Scholar
  32. 32.
    Oddone M, Aceto M, Baldizzone M, Musso D, Osella D (2009) J Agric Food Chem 57:3404–3408CrossRefGoogle Scholar
  33. 33.
    Costas-Rodríguez M, Lavilla I, Bendicho C Analytica Chimica Acta Corrected Proof (in press)Google Scholar
  34. 34.
    Branch S, Burke S, Evans P, Fairman B, Briche CS (2003) J Anal At Spectrom 18:17–22CrossRefGoogle Scholar
  35. 35.
    Camin F, Larcher R, Perini M, Bontempo L, Bertoldi D, Gagliano G, Nicolini G, Versini G (2010) Food Chem 118:901–909CrossRefGoogle Scholar
  36. 36.
    Franke BM, Hadorn R, Bosset JO, Gremaud G, Kreuzer M (2008) Meat Sci 80:944–947CrossRefGoogle Scholar
  37. 37.
    Heaton K, Kelly SD, Hoogewerff J, Woolfe M (2008) Food Chem 107:506–515CrossRefGoogle Scholar
  38. 38.
    Kelly S, Baxter M, Chapman S, Rhodes C, Dennis J, Brereton P (2002) Eur Food Res Technol 214:72–78CrossRefGoogle Scholar
  39. 39.
    Perez AL, Smith BW, Anderson KA (2006) J Agric Food Chem 54:4506–4516CrossRefGoogle Scholar
  40. 40.
    Rodushkin I, Ödman F, Appelbad PK (1999) J Food Compost Anal 12:243–257CrossRefGoogle Scholar
  41. 41.
    Almeida CM, Vasconcelos MT (2003) J Agric Food Chem 51:4788–4798CrossRefGoogle Scholar
  42. 42.
    Augagneur S, Médina B, Szpunar J, Lobinski R (1996) J Anal At Spectrosc 11:713–721CrossRefGoogle Scholar
  43. 43.
    Jakubowski N, Brandt R, Stuewer D, Eschnauer HR, Görtges S (1999) Fresenius’ J Anal Chem 364:424–428CrossRefGoogle Scholar
  44. 44.
    Barbaste M, Médina B, Sarabia L, Ortiz MC, Pérez-Trujillo JP (2002) Anal Chim Acta 472:161–174CrossRefGoogle Scholar
  45. 45.
    Ladrón de Guevera RG, González M, García-Meseguer MJ, Nieto JM, Amo M, Varón R (2002) J Sci Food Agri 82:1061–1069CrossRefGoogle Scholar
  46. 46.
    DIN V 19730 (1997) Bodenbeschaffenheit-Extraktion von Spurenelementen mit Ammoniumnitratlösung, Beuth, BerlinGoogle Scholar
  47. 47.
    ISO (1993) Guide to expression of uncertainty in measurement (‘GUM’), ISO GenevaGoogle Scholar
  48. 48.
    EURACHEM (1995) Quantifying uncertainty in analytical measurement. LGC, TeddingtonGoogle Scholar
  49. 49.
    Thomsen V, Schatzlein D, Mercuro D (2003) Spectroscopy 18:112–114Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marion Brunner
    • 1
  • Róbert Katona
    • 2
  • Zsolt Stefánka
    • 2
  • Thomas Prohaska
    • 1
  1. 1.Department of Chemistry, VIRIS LaboratoryUniversity of Natural Resources and Applied Life Sciences ViennaViennaAustria
  2. 2.Department of Radiation SafetyInstitute of Isotopes of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations