Determination of the geographical origin of processed spice using multielement and isotopic pattern on the example of Szegedi paprika
- 527 Downloads
- 41 Citations
Abstract
This case study presents a fast and reliable method of combining strontium isotope ratios (87Sr/86Sr) with a multielement pattern (Rb, Sr, Y, Zr, Mo, Cd, Ba, Pb, Th, U, Mg, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As and rare earth elements) by means of inductively coupled plasma mass spectrometry (ICP-MS) to establish a unique fingerprint of authentic Szegedi Fűszerpaprika (PDO) and classify authentic and purchased paprika from different known, declared and unknown geographical origin using multivariate statistical tools (principal component and canonical discriminant analysis). Since paprika represents a processed spice, alterations in element and Sr isotopic composition throughout the production process were investigated. The Sr source in the final product was identified to stem from bioavailable Sr sources in soil. Therefore, the ammonium nitrate extract of a soil is sufficient to establish a Sr fingerprint for agricultural products of a region. As a consequence, the spice paprika can be traced back to its geographical origin even after processing.
Keywords
Food traceability Paprika Strontium isotope ratio (MC)-ICP-MS Multielement analyses Rare earth elementsNotes
Acknowledgments
We acknowledge the scientific support of FWF 267N11, the BOKUDoc grant, the Austrian-Hungarian Research Fund (72öu2), the Hungarian Research Fund (OTKA F61087) and the Bolyai János Research Fellowship. We would like to thank László Abrankó from the Corvinus University of Budapest, Karin Dauda, Matthias Zeilinger, Ylva Rodhe, Giacomo Di Noto and Pipsa Salolammi for providing sample material.
References
- 1.European Council Regulation No. 510/2006 (2006) Official Journal of the European Union, European Commission, BrusselsGoogle Scholar
- 2.Capo RC, Stewart BW (1998) Geoderma 82:197–225CrossRefGoogle Scholar
- 3.Bentley RA (2006) J Archeol Method Theory 13:135–187CrossRefGoogle Scholar
- 4.Aberg G (1995) Water Soil Air Pollut 79:309–322CrossRefGoogle Scholar
- 5.Pett-Ridge JC, Derry LA, Kurtz AC (2009) Geochim Cosmochim Acta 73:25–43CrossRefGoogle Scholar
- 6.Almeida CM, Vasconcelos MT (2001) J Anal At Spectrom 16:607–611CrossRefGoogle Scholar
- 7.Almeida CM, Vasconcelos MT (2004) Food Chem 85:7–12CrossRefGoogle Scholar
- 8.Ehrlich S, Gavrieli I, Dor LB, Halicz L (2001) J Anal At Spectrom 16:1389–1395CrossRefGoogle Scholar
- 9.Barbaste M, Robinson K, Guilfoyle S, Medina B, Lobinski R (2002) J Anal At Spectrom 17:135–137CrossRefGoogle Scholar
- 10.Fortunato G, Mumic K, Wunderli S, Pillonel L, Bosset JO, Gremaud G (2004) J Anal At Spectrom 19:227–234CrossRefGoogle Scholar
- 11.Brach-Papa C, Van Bocxstaele M, Ponzevera E, Quétel CR (2009) Spectrochim Acta Part B: At Spectrosc 64:229–234CrossRefGoogle Scholar
- 12.Swoboda S, Brunner M, Boulyga S, Galler P, Horacek M, Prohaska T (2008) Anal Bioanal Chem 390:487–494CrossRefGoogle Scholar
- 13.García-Ruiz S, Moldovan M, Fortunato G, Wunderli S, García Alonso JI (2007) Anal Chim Acta 590:55–66CrossRefGoogle Scholar
- 14.Rodushkin I, Bergman T, Douglas D, Engström E, Sörlin D, Baxter DC (2007) Anal Chim Acta 583:310–318CrossRefGoogle Scholar
- 15.Voerkelius S, Lorenz GD, Rummel S, Quétel CR, Heiss G, Baxter M, Brach-Papa C, Deters-Itzelsberger P, Hoelzl S, Hoogewerff J, Ponzevera E, Van Bocxstaele M, Ueckermann H (2009) Food Chem 118:933–940CrossRefGoogle Scholar
- 16.Montgomery J, Evans JA, Wildman G (2006) Appl Geochem 21:1626–1634CrossRefGoogle Scholar
- 17.Crittenden RG, Andrew AS, LeFournour M, Young MD, Middleton H, Stockmann R (2007) Int Dairy J 17:421–428CrossRefGoogle Scholar
- 18.Rummel S, Hoelzl S, Horn P, Rossmann A, Schlicht C (2010) Food Chem 118:890–900CrossRefGoogle Scholar
- 19.Cao X, Chen Y, Gu Z, Wang X (2000) Int J Environ Anal Chem 76:295–309CrossRefGoogle Scholar
- 20.Liang T, Zhang S, Wang L, Kung HT, Wang Y, Hu A, Ding S (2005) Environ Geochem Health 27:301–311CrossRefGoogle Scholar
- 21.Markert B, Zhang DL (1991) Sci Total Environ 103:27–35CrossRefGoogle Scholar
- 22.Benincasa C, Lewis J, Sindona G, Tagarelli A (2008) Food Chem 110:257–262CrossRefGoogle Scholar
- 23.Martino FA, Sánchez MF, Sanz-Medel A (2001) Anal Chim Acta 442:191–200CrossRefGoogle Scholar
- 24.Benincasa C, Lewis J, Perri E, Sindona G, Tagarelli A (2007) Anal Chim Acta 585:366–370CrossRefGoogle Scholar
- 25.Galgano F, Favati F, Caruso M, Scarpa T, Palma A (2008) LWT-Food Sci Technol 41:1808–1815CrossRefGoogle Scholar
- 26.González A, Llorens A, Cervera ML, Armenta S, De la Guardia M (2009) Food Chem 112:26–34CrossRefGoogle Scholar
- 27.Kment P, Mihaljevic M, Ettler V, Sebek O, Strnad L, Rohlová L (2005) Food Chem 91:157–165CrossRefGoogle Scholar
- 28.Serapinas P, Venskutonis PR, Aninkevicius V, Ezerinskis Z, Galdikas A, Juzikiene V (2008) Food Chem 107:1652–1660Google Scholar
- 29.Taylor VF, Longerich HP, Greenough JD (2003) J Agric Food Chem 51:856–860CrossRefGoogle Scholar
- 30.Baxter MJ, Crews HM, Dennis MJ, Goodall I, Anderson D (1997) Food Chem 60:443–450CrossRefGoogle Scholar
- 31.Castineira MdM, Feldmann I, Jakubowski N, Andersson JT (2004) J Agric Food Chem 52:2962–2974CrossRefGoogle Scholar
- 32.Oddone M, Aceto M, Baldizzone M, Musso D, Osella D (2009) J Agric Food Chem 57:3404–3408CrossRefGoogle Scholar
- 33.Costas-Rodríguez M, Lavilla I, Bendicho C Analytica Chimica Acta Corrected Proof (in press)Google Scholar
- 34.Branch S, Burke S, Evans P, Fairman B, Briche CS (2003) J Anal At Spectrom 18:17–22CrossRefGoogle Scholar
- 35.Camin F, Larcher R, Perini M, Bontempo L, Bertoldi D, Gagliano G, Nicolini G, Versini G (2010) Food Chem 118:901–909CrossRefGoogle Scholar
- 36.Franke BM, Hadorn R, Bosset JO, Gremaud G, Kreuzer M (2008) Meat Sci 80:944–947CrossRefGoogle Scholar
- 37.Heaton K, Kelly SD, Hoogewerff J, Woolfe M (2008) Food Chem 107:506–515CrossRefGoogle Scholar
- 38.Kelly S, Baxter M, Chapman S, Rhodes C, Dennis J, Brereton P (2002) Eur Food Res Technol 214:72–78CrossRefGoogle Scholar
- 39.Perez AL, Smith BW, Anderson KA (2006) J Agric Food Chem 54:4506–4516CrossRefGoogle Scholar
- 40.Rodushkin I, Ödman F, Appelbad PK (1999) J Food Compost Anal 12:243–257CrossRefGoogle Scholar
- 41.Almeida CM, Vasconcelos MT (2003) J Agric Food Chem 51:4788–4798CrossRefGoogle Scholar
- 42.Augagneur S, Médina B, Szpunar J, Lobinski R (1996) J Anal At Spectrosc 11:713–721CrossRefGoogle Scholar
- 43.Jakubowski N, Brandt R, Stuewer D, Eschnauer HR, Görtges S (1999) Fresenius’ J Anal Chem 364:424–428CrossRefGoogle Scholar
- 44.Barbaste M, Médina B, Sarabia L, Ortiz MC, Pérez-Trujillo JP (2002) Anal Chim Acta 472:161–174CrossRefGoogle Scholar
- 45.Ladrón de Guevera RG, González M, García-Meseguer MJ, Nieto JM, Amo M, Varón R (2002) J Sci Food Agri 82:1061–1069CrossRefGoogle Scholar
- 46.DIN V 19730 (1997) Bodenbeschaffenheit-Extraktion von Spurenelementen mit Ammoniumnitratlösung, Beuth, BerlinGoogle Scholar
- 47.ISO (1993) Guide to expression of uncertainty in measurement (‘GUM’), ISO GenevaGoogle Scholar
- 48.EURACHEM (1995) Quantifying uncertainty in analytical measurement. LGC, TeddingtonGoogle Scholar
- 49.Thomsen V, Schatzlein D, Mercuro D (2003) Spectroscopy 18:112–114Google Scholar