Effect of roasting process on phenolic, antioxidant and browning properties of carob powder

  • Hilal Şahin
  • Ayhan Topuz
  • Monika Pischetsrieder
  • Feramuz Özdemir
Original Paper

Abstract

Roasted carob powder was obtained using different time–temperature combinations and some quality characteristics such as total phenolic content (TPC), total antioxidant activity (TAA), browning index (BI) at 420 nm, UV absorbance (UV-A) at 294 nm, and pH has been investigated. Both the roasting temperature and time significantly (P < 0.01) affected the quality characteristics of the product. However, the roasting time was found to be a critical factor in determining the overall quality of the product. While the TPC, TAA, BI and UV-A values of the samples increased with the increasing roasting temperature and time, the pH of the samples decreased gradually. The quality characteristics of the carob powders changed markedly in between 20 and 60 min of roasting which indicates that the heat-induced reactions accelerate particularly in that period of roasting. The correlations between all these chemical properties of carob powder were found to be significant (P < 0.0001) during roasting.

Keywords

Carob powder Roasting Total phenolic Antioxidant activity Maillard reaction Browning index 

Notes

Acknowledgments

The authors wish to thank the Scientific Research Fund of Akdeniz University for a partial financial support and the DAAD (Deutscher Akademischer Austausch Dienst) for a grant to H.S.

References

  1. 1.
    Battle I, Tous J (1997) Carob Tree (Ceratonia siliqua L.). International Plant Genetic Resources Institute. Via delle Sette Chiese 142 00145 Rome, ItalyGoogle Scholar
  2. 2.
    Macleod G, Forcen M (1992) Phytochem 31:3113–3119CrossRefGoogle Scholar
  3. 3.
    Petit MD, Pinilla M (1995) Lebensm Wiss Technol 28:145–152Google Scholar
  4. 4.
    Correia PJ, Martins-Loução MA (2005) Field Crop Res 91:1–6CrossRefGoogle Scholar
  5. 5.
    Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon M-S, Nakayama T (2002) J Agric Food Chem 50:373–377CrossRefGoogle Scholar
  6. 6.
    Owen RW, Haubner R, Hull WE, Erben G, Spiegelhalder B, Bartsch H (2003) Food Chem Toxicol 41:1727–1738CrossRefGoogle Scholar
  7. 7.
    Santos M, Rodrigus A, Teixeira JA (2005) Biochem Eng J 25:1–6CrossRefGoogle Scholar
  8. 8.
    Papagiannopoulos M, Wollseifen HR, Mellenthin A, Haber B, Galensa R (2004) J Agric Food Chem 52:3784–3791CrossRefGoogle Scholar
  9. 9.
    Avollone R, Plessi M, Baraldi M, Monzani A (1997) J Food Compos Anal 10:166–172CrossRefGoogle Scholar
  10. 10.
    Yousif AK, Alghzawi HM (2000) Food Chem 69:283–287CrossRefGoogle Scholar
  11. 11.
    Carabasa-Giribert M, Ibarz-Ribas A (2000) J Food Eng 44:181–189CrossRefGoogle Scholar
  12. 12.
    Friedman M (1996) J Agric Food Chem 44:631–653CrossRefGoogle Scholar
  13. 13.
    Gökmen V, Açar ÖÇ, Köksel H, Acar J (2007) Food Chem 104:1136–1142CrossRefGoogle Scholar
  14. 14.
    Rurian-Henares JA, Morales FJ (2008) J Agric Food Chem 56:2357–2362CrossRefGoogle Scholar
  15. 15.
    Yılmaz Y, Toledo R (2005) Food Chem 93:273–278CrossRefGoogle Scholar
  16. 16.
    Hegele J, Münch G, Pischetsrieder M (2009) Mol Nutr Food Res 53. doi:  10.1002/mnfr.200800221
  17. 17.
    Nakamura A, Sasaki F, Watanabe K, Ojima T, Ahn D-H, Saeki H (2006) J Agric Food Chem 54:9529–9534CrossRefGoogle Scholar
  18. 18.
    Benjakul S, Lertittikul W, Bauer F (2005) Food Chem 93:189–196CrossRefGoogle Scholar
  19. 19.
    Wagner K-H, Derkits S, Herr M, Schuh W, Elmadfa I (2002) Food Chem 78:375–382CrossRefGoogle Scholar
  20. 20.
    Hwang J-Y, Shue Y-S, Chang H-M (2001) Food Res Int 34:639–647CrossRefGoogle Scholar
  21. 21.
    Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR (2001) Trends Food Sci Tech 11:340–346CrossRefGoogle Scholar
  22. 22.
    Nicoli MC, Anese M, Manzocco L, Lerici CR (1997) Lebensm Wiss Technol 30:292–297CrossRefGoogle Scholar
  23. 23.
    Summa CA, de la Calle B, Brohee M, Stadler RH, Anklam E (2007) Lebensm Wiss Technol 40:1849–1854Google Scholar
  24. 24.
    Cämmerer B, Kroh LW (2006) Eur Food Res Technol 223:469–474CrossRefGoogle Scholar
  25. 25.
    Bekedam EK, Schols HA, Caemmerer B, Kroh LW, van Boekel MAJS, Smit G (2008) J Agric Food Chem 56:4597–4604CrossRefGoogle Scholar
  26. 26.
    Krysiak W (2006) J Food Eng 77:449–453CrossRefGoogle Scholar
  27. 27.
    Kahyaoglu T, Kaya S (2006) J Food Eng 75:167–177CrossRefGoogle Scholar
  28. 28.
    Özdemir M, Devres O (2000) J Food Eng 44:31–38CrossRefGoogle Scholar
  29. 29.
    Wall MM, Gentry TS (2007) Lebensm Wiss Technol 40:587–593Google Scholar
  30. 30.
    Loots DT, Van Der Westhuizen FH, Jerling J (2006) J Agric Food Chem 54:1271–1276CrossRefGoogle Scholar
  31. 31.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radic Bio Med 26:1231–1237CrossRefGoogle Scholar
  32. 32.
    Arlorio M, Locatelli M, Travaglia F, Coïsson J-D, Del Grosso E, Minassi A, Appendino G, Martelli A (2008) Food Chem 106:967–975CrossRefGoogle Scholar
  33. 33.
    Krings U, El-Saharty YS, El-Zeany BA, Pabel B, Berger RG (2000) Food Chem 71:91–95CrossRefGoogle Scholar
  34. 34.
    Şensoy I, Rosen RT, Ho C-T, Karwe MV (2006) Food Chem 99:388–393CrossRefGoogle Scholar
  35. 35.
    Durmaz G, Alpaslan M (2007) Food Chem 100:1177–1181CrossRefGoogle Scholar
  36. 36.
    Yen G-C, Hung C-Y (2000) Food Res Int 33:487–492CrossRefGoogle Scholar
  37. 37.
    Yu J, Ahmedna M, Goktepe I (2005) Food Chem 90:199–206CrossRefGoogle Scholar
  38. 38.
    Ledl F, Schleicher E (1990) Angew Chem Int Ed 29:565–594CrossRefGoogle Scholar
  39. 39.
    Bekedam EK, Loots MJ, Schols HA, Van Boekel MA, Smit G (2008) J Agric Food Chem 56:7138–7145CrossRefGoogle Scholar
  40. 40.
    Woffenden H, Ames J, Chandra S (2001) J Agric Food Chem 49:5524–5530CrossRefGoogle Scholar
  41. 41.
    Ajandouz EH, Tchiakpe LS, Ore FD, Benajiba A, Puigserver A (2001) J Food Sci 66:926–931CrossRefGoogle Scholar
  42. 42.
    Phongkanpai V, Benjakul S, Tanaka M (2006) J Food Biochem 30:174–186CrossRefGoogle Scholar
  43. 43.
    Kitts D, Wu C, Nagasawa T (2006) Mol Nutr Food Res 50:1180–1190CrossRefGoogle Scholar
  44. 44.
    Eichner K, Karle M (1972) J Agric Food Chem 20:218–223CrossRefGoogle Scholar
  45. 45.
    Ledl F, Schleicher E (1990) Angew Chem Int Ed Engl 29:565–569CrossRefGoogle Scholar
  46. 46.
    Feldman J, Ryder W, Kung J (1969) J Agric Food Chem 17:733–739CrossRefGoogle Scholar
  47. 47.
    Smejkal Q, Kurz T, Fiedler T, Kroh L (2007) Int J Food Eng 3:1–18Google Scholar
  48. 48.
    Davidek T, Robert F, Devaud S, Arce Vera F, Blank I (2006) J Agric Food Chem 54:6677–6684CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Hilal Şahin
    • 1
  • Ayhan Topuz
    • 1
  • Monika Pischetsrieder
    • 2
  • Feramuz Özdemir
    • 1
  1. 1.Department of Food Engineering, Faculty of EngineeringAkdeniz UniversityAntalyaTurkey
  2. 2.Department of Chemistry and PharmacyFriedrich Alexander UniversityErlangenGermany

Personalised recommendations