Characterization and quantification of health beneficial anthocyanins in leaf chicory (Cichorium intybus) varieties

  • Vanisree Mulabagal
  • Haibo Wang
  • Mathieu Ngouajio
  • Muraleedharan G. Nair
Original Paper


Plants belonging to the genus Cichorium are used as leafy vegetable. Varieties of Chichorium intybus, commonly known as leaf chicory, have also been used in folk medicine to treat liver disorders and inflammation. In the present study, we report bioactive anthocyanin content in C. intybus varieties Balou, Indigo, Manchini, Leonardo, and Erfano and functional food quality based on in vitro lipid peroxidation (LPO) and cyclooxygenase (COX-1 and -2) enzyme inhibitory activities. The chromatographic profiles of these varieties were similar and showed cyanidin-3-O-(6″-malonyl-β-glucopyranoside) (1) as the major anthocyanin (>95%) with the highest amount in Indigo (2.8 mg/g fresh weight). Chichorium intybus varieties were extracted with water and extracts were evaluated for LPO, COX-1 and -2 enzymes inhibitory activities at 250 μg/mL. Among the varieties evaluated, the water extracts of Indigo, Balou, Leonardo, Manchini, and Erfano inhibited LPO by 92, 87.2, 79.6, 54.5, and 65.1%, respectively. In the COX enzyme inhibitory assay, the extracts of Leonardo, Balou, Indigo, Mancini, and Erfano inhibited COX-1 and COX-2 enzymes by 19.7, 26.4, 41.3, 15.6, 18.2% and 68.3, 76.5, 84.9, 43.7, 55.4%, respectively. Bioassay-guided isolation of anthocyanin 1 from C. intybus var. Indigo was achieved by using in vitro LPO and COX enzyme inhibitory assays.


Radicchio Cyclooxygenase Lipid peroxidation Anthocyanin Leaf chicory 



This is a contribution from the Michigan State University Agricultural Experiment Station. We thank Bejo Seeds Inc., Oceano, California, USA for providing an ample supply of seeds of leaf chicory varieties used in this study.


  1. 1.
    DerMarderosian A (2002) The review of natural products: facts and comparisons. Missouri, New York, pp 162–164Google Scholar
  2. 2.
    Kocsis L, Hagymasi K, Kerry A, Szoke E, Blazovics A (2003) Acta Biol Szeged 47:143–146Google Scholar
  3. 3.
    Muthusamy VS, Anand S, Sangeetha KN, Sujatha S, Arun B, Lakshmi BS (2008) Chem Biol Interact 174:69–78CrossRefGoogle Scholar
  4. 4.
    Chopra RN, Chopra IC, Hand KL (1958) Indigenous drugs of India. Academic Publishers, Calcutta, p 318Google Scholar
  5. 5.
    Pushparaj PN, Low HK, Manikandan J, Tan BKM, Tan CH (2007) J Ethnopharmacol 111:430–434CrossRefGoogle Scholar
  6. 6.
    Bais HP, Ravishankar GA (2001) J Sci Food Agric 81:467–484CrossRefGoogle Scholar
  7. 7.
    Gupta SK, Ansari SH (2005) Asian J Chem 17:33–36Google Scholar
  8. 8.
    Phondke GP (1992) The wealth of India, vol 2. CSIR, New Delhi, pp 556–561Google Scholar
  9. 9.
    Sies H, Cadenas E (1985) Philos Trans R Soc B 311:617–631CrossRefGoogle Scholar
  10. 10.
    Spiteller G, Nagy L (2005) Mol Nutr Food Res 49:989–991CrossRefGoogle Scholar
  11. 11.
    Davi G, Falco A, Patrono C (2005) Antioxid Redox Signal 7:256–268CrossRefGoogle Scholar
  12. 12.
    Sagai M, Ichinose T (1980) Life Sci 27:731–738CrossRefGoogle Scholar
  13. 13.
    Lucas SM, Rothwell NJ, Gibson RM (2006) Br J Pharmacol 147:S232–S240CrossRefGoogle Scholar
  14. 14.
    Lawrence J, Marnett SW, Rowlinson DCG, Amit SK, Cheryl AL (1999) J Biol Chem 274:22903–22906CrossRefGoogle Scholar
  15. 15.
    Vareed SK, Reddy MK, Schutzki RE, Nair MG (2006) Life Sci 78:777–784CrossRefGoogle Scholar
  16. 16.
    Fossen T, Andersen QM (1997) Food Chem 58:215–217CrossRefGoogle Scholar
  17. 17.
    Arora A, Strasburg GM (1997) J Am Oil Chem Soc 74:1031–1040CrossRefGoogle Scholar
  18. 18.
    Boo HO, Chon SU, Lee SY (2006) J Hortic Sci Biotech 81:478–482Google Scholar
  19. 19.
    Bridle P, Thomas LRS, Timberlake CF, Self R (1984) Phytochemistry 23:2968–2969CrossRefGoogle Scholar
  20. 20.
    Seeram NP, Nair MG (2002) J Agric Food Chem 50:5308–5312CrossRefGoogle Scholar
  21. 21.
    Vareed SK, Schutzki RE, Nair MG (2007) Phytomedicine 14:706–709CrossRefGoogle Scholar
  22. 22.
    Seeram NP, Cichewicz RH, Chandra A, Nair MG (2003) J Agric Food Chem 51:1948–1951CrossRefGoogle Scholar
  23. 23.
    Momin RA, Bourquin LD, Nair MG (2001) Phytomedicine 8:362–369CrossRefGoogle Scholar
  24. 24.
    Konczak I, Zhang W (2004) J Biomed Biotechnol 5:239–240CrossRefGoogle Scholar
  25. 25.
    Record IR, Dreosti IE, McInerney JK (2001) Br J Nutr 85:459–464CrossRefGoogle Scholar
  26. 26.
    Thomas JA (1994) Modern nutrition in health and disease, vol 1, 8th edn, Lea and Febiger, Philadelphia, pp 501–512Google Scholar
  27. 27.
    Wang H, Cao G, Prior RL (1996) J Agric Food Chem 44:701–705CrossRefGoogle Scholar
  28. 28.
    Heimler D, Isolani L, Vignolini P, Romani A (2009) Food Chem 114:765–770CrossRefGoogle Scholar
  29. 29.
    Lavelli V (2008) J Agric Food Chem 56:7194–7200CrossRefGoogle Scholar
  30. 30.
    HeimLer D, Isolani L, Vignolini P, Tombelli S, Romani A (2007) J Agric Food Chem 55:1724–1729CrossRefGoogle Scholar
  31. 31.
    Norbaek R, Nielsen K, Kondo T (2002) Phytochemistry 60:357–359CrossRefGoogle Scholar
  32. 32.
    Takeda K, Harborne JB, Self R (1986) Phytochemistry 25:1337–1342CrossRefGoogle Scholar
  33. 33.
    Timeberlake CF, Bridle P, Tanchev SS (1971) Phytochemistry 10:165–169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Vanisree Mulabagal
    • 1
  • Haibo Wang
    • 3
  • Mathieu Ngouajio
    • 2
  • Muraleedharan G. Nair
    • 1
  1. 1.Bioactive Natural Products and Phytoceuticals, Department of Horticulture and National Food Safety and Toxicology CenterMichigan State UniversityEast LansingUSA
  2. 2.Department of HorticultureMichigan State UniversityEast LansingUSA
  3. 3.Varian, Inc.2700 Mitchell DriveWalnut CreekUSA

Personalised recommendations