Advertisement

European Food Research and Technology

, Volume 229, Issue 5, pp 731–742 | Cite as

Factorial design optimisation of grape (Vitis vinifera) seed polyphenol extraction

  • Evangelia Karvela
  • Dimitris P. MakrisEmail author
  • Nick Kalogeropoulos
  • Vaios T. Karathanos
  • Panagiotis Kefalas
Original Paper

Abstract

A 23-full factorial design and response surface methodology were deployed to assess some basic factors (time, % ethanol and pH) affecting profoundly the extractability of polyphenolic phytochemicals from grape (V. vinifera) seeds. In an effort to obtain a thorough insight into the applicability of the models established, seed extracts from three different varieties were tested, by determining several indices of the polyphenolic composition, such as total polyphenol (TP), total flavanol (TFl) and proanthocyanidin (PC) concentrations. It has been shown that the models generated can adequately predict the recovery levels for each polyphenol group, but the optimal conditions predicted for TP, TFl and PC recovery varied significantly. Notable differences were also seen among the different varieties. Correlation of the polyphenol indices with the antiradical activity and reducing power of the extracts indicated that there is no consistent pattern to associate specific polyphenol classes with the antioxidant potential, which might be an evidence of antagonism. Examination of the optimally obtained extracts using liquid chromatography-mass spectrometry revealed that the most prominent compounds were catechin, some flavanol dimers and galloylated derivatives thereof.

Keywords

Antioxidants Flavanols Grape seeds Polyphenols Response surface 

Abbreviations

AAE

Ascorbic acid equivalents

AAR

Antiradical activity

CT

Catechin

CTE

Catechin equivalents

CTG

Catechin gallate

CyE

Cyanidin equivalents

ε

Molar absorptivity

GAE

Gallic acid equivalents

MW

Molecular weight

PC

Proanthocyanidins

PR

Reducing power

SD

Standard deviation

TFl

Total flavanols

TP

Total polyphenols

TRE

Trolox equivalents

References

  1. 1.
    Musse N, Lorenzen L, Aldrich C (2007) J Clean Prod 15:417–431CrossRefGoogle Scholar
  2. 2.
    Pinelo M, Arnous A, Meyer AS (2006) Trends Food Sci Technol 17:579–590CrossRefGoogle Scholar
  3. 3.
    Pezzuto JM (2008) J Agric Food Chem 56:6777–6784CrossRefGoogle Scholar
  4. 4.
    Ju ZY, Howard LR (2005) J Food Sci 70:270–276Google Scholar
  5. 5.
    Kammerer D, Claus A, Schieber A, Carle R (2005) J Food Sci 70:157–163Google Scholar
  6. 6.
    Spigno G, Tramelli L, De Faveri DM (2007) J Food Eng 81:200–208CrossRefGoogle Scholar
  7. 7.
    Guendez R, Kallithraka S, Makris DP, Kefalas P (2005) Phytochem Anal 16:17–23CrossRefGoogle Scholar
  8. 8.
    Makris DP, Boskou G, Andrikopoulos NK (2007) Biores Technol 98:2963–2967CrossRefGoogle Scholar
  9. 9.
    Shi J, Yu J, Pohorly J, Young JC, Bryan M, Wu Y (2003) J Food Agric Environ 1:42–47Google Scholar
  10. 10.
    Yilmaz Y, Toledo RT (2006) J Food Compos Anal 19:41–48CrossRefGoogle Scholar
  11. 11.
    Mylonaki S, Kiassos E, Makris DP, Kefalas P (2008) Anal Bioanal Chem 392:977–985CrossRefGoogle Scholar
  12. 12.
    Arnous A, Makris DP, Kefalas P (2002) J Food Compos Anal 15:655–665CrossRefGoogle Scholar
  13. 13.
    Nigel CW, Glories Y (1991) Am J Enol Vitic 42:364–366Google Scholar
  14. 14.
    Makris DP, Boskou G, Chiou A, Andrikopoulos NK (2008) Am J Food Technol 3:164–173CrossRefGoogle Scholar
  15. 15.
    Makris DP, Boskou G, Andrikopoulos NK (2007) J Food Compos Anal 20:125–132CrossRefGoogle Scholar
  16. 16.
    Makris DP, Boskou G, Andrikopoulos NK, Kefalas P (2008) Eur Food Res Technol 226:1075–1079CrossRefGoogle Scholar
  17. 17.
    Li H-J, Deinzer ML (2007) Anal Chem 79:1739–1748CrossRefGoogle Scholar
  18. 18.
    Luque-Rodríguez J, Pérez-Juan P, Luque de Castro MD (2006) J Agric Food Chem 54:8775–8781CrossRefGoogle Scholar
  19. 19.
    Psarra E, Makris DP, Kallithraka S, Kefalas P (2002) J Sci Food Agric 82:1014–1020CrossRefGoogle Scholar
  20. 20.
    Guendez R, Kallithraka S, Makris DP, Kefalas P (2005) Food Chem 89:1–9CrossRefGoogle Scholar
  21. 21.
    Peyrat-Maillard MN, Cuvelier ME, Berset C (2003) J Am Oil Chem Soc 80:1007–1012CrossRefGoogle Scholar
  22. 22.
    Villaño D, Fernández-Pachón MS, Moyá ML, Troncoso AM, García-Parilla MC (2007) Talanta 71:230–235CrossRefGoogle Scholar
  23. 23.
    Bors W, Michel C, Stettmeier K (2000) Arch Biochem Biophys 374:347–355CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Evangelia Karvela
    • 1
  • Dimitris P. Makris
    • 2
    Email author
  • Nick Kalogeropoulos
    • 1
  • Vaios T. Karathanos
    • 1
  • Panagiotis Kefalas
    • 2
  1. 1.Department of Science of Dietetics-NutritionHarokopio UniversityKallithea, AthensGreece
  2. 2.Food Quality & Chemistry of Natural Products ProgrammeMediterranean Agronomic Institute of Chania (M.A.I.Ch.)ChaniaGreece

Personalised recommendations