Advertisement

European Food Research and Technology

, Volume 229, Issue 3, pp 533–538 | Cite as

Tyramine production of technological important strains of Lactobacillus, Lactococcus and Streptococcus

  • Leona BuňkováEmail author
  • František Buňka
  • Michaela Hlobilová
  • Zuzana Vaňátková
  • Dana Nováková
  • Vladimír Dráb
Original Paper

Abstract

The aim of this paper was to study the biogenic amines (histamine, tyramine, putrescine, cadaverine, agmatine, spermine and spermidine) production of selected technological important lactic acid bacteria (strains of the genera Lactococcus, Lactobacillus and Streptococcus). Three methods (ion-exchange chromatography (IEC), PCR and cultivation method with pH indicator) were used. Within the 39 strains of lactic acid bacteria tested, the production of tyramine (formed by tyrosine decarboxylase) was detected in eight strains (3 strains of Lactococcus lactis subsp. lactis, three strains of Lactococcus lactis subsp. cremoris, 1 strain of Streptococcus thermophilus and 1 strain of Lactobacillus delbrueckii subsp. bulgaricus). The other tested biogenic amines were not detected. Cultivation in decarboxylation broth seems to be the least accurate method for the detection of biogenic amines due to enhanced risk of false-positive reactions. Therefore, in order to detect bacteria producing biogenic amines, the combination of PCR and chromatographic methods (e.g. IEC) can be recommended.

Keywords

Biogenic amines Decarboxylation broth Ion-exchange chromatography Lactic acid bacteria PCR 

Notes

Acknowledgment

This study was supported by projects of Ministry of Education, Youth and Sports of the Czech Republic, MSM7088352101 and MSM0021622416.

References

  1. 1.
    Halász A, Baráth Á, Simon-Sarkadi L, Holzapfel W (1994) Trends Food Sci Technol 5:42–49CrossRefGoogle Scholar
  2. 2.
    Silla Santos MH (1996) Int J Food Microbiol 29:213–231CrossRefGoogle Scholar
  3. 3.
    Bover-Cid S, Miguélez-Arrizado MJ, Becker B, Holzapfel WH, Vidal-Carou MC (2008) Food Microbiol 25:269–277CrossRefGoogle Scholar
  4. 4.
    Fernández M, Linares DM, Rodríguez A, Alvarez MA (2007) Appl Microbiol Biotechnol 73:1400–1406CrossRefGoogle Scholar
  5. 5.
    Gardini F, Martuscelli M, Caruso MC, Galgano F, Crudele MA, Favati F, Guerzoni ME, Suzzi G (2001) Int J Food Microbiol 64:105–117CrossRefGoogle Scholar
  6. 6.
    Gardini F, Zaccarelli A, Belleti N, Faustini F, Cavazza A, Martuscelli M, Mastrocola D, Suzzi G (2005) Food Control 16:609–616CrossRefGoogle Scholar
  7. 7.
    Arena ME, Fiocco D, Manca de Nadra MC, Pardo I, Spano G (2007) Curr Microbiol 55:205–210CrossRefGoogle Scholar
  8. 8.
    Aymerich T, Martín B, Garriga M, Vidal-Carou MC, Bover-Cid S, Hugas M (2006) J Appl Microbiol 100:40–49CrossRefGoogle Scholar
  9. 9.
    Landete JM, Ferrer S, Pardo I (2007) Food Control 18:1569–1574CrossRefGoogle Scholar
  10. 10.
    Roig-Sagués AX, Hernàndez-Herrero MM, López-Sabater EI, Rodríguez-Jerez JJ, Mora-Ventura MT (1997) Lett Appl Microbiol 25:309–312CrossRefGoogle Scholar
  11. 11.
    Arena ME, Manca de Nadra MC (2001) J Appl Microbiol 90:158–162CrossRefGoogle Scholar
  12. 12.
    Landete JM, de las Rivas B, Marcobal A, Muñoz R (2008) Crit Rev Food Sci Nutr 48:697–714CrossRefGoogle Scholar
  13. 13.
    Bover-Cid S, Hugas M, Izquierdo-Pulido M, Vidal-Carou MC (2001) Int J Food Microbiol 66:185–189CrossRefGoogle Scholar
  14. 14.
    Actis LA, Smoot JC, Barancin CE, Findlay RH (1999) J Microbiol Methods 39:79–90CrossRefGoogle Scholar
  15. 15.
    Bover-Cid S, Holzapfel WH (1999) Int J Food Microbiol 53:33–41CrossRefGoogle Scholar
  16. 16.
    Maijala RL (1993) Lett Appl Microbiol 17:40–43CrossRefGoogle Scholar
  17. 17.
    Constantini A, Cersosimo M, del Prete V, Garcia-Moruno E (2006) J Food Protect 69:391–396Google Scholar
  18. 18.
    Landete JM, de las Rivas B, Marcobal A, Muñoz R (2007) Int J Food Microbiol 117:258–269CrossRefGoogle Scholar
  19. 19.
    Agresti A (1984) Analysis of ordinal categorical data. Wiley, New YorkGoogle Scholar
  20. 20.
    Arena ME, Manca de Nadra MC, Muñoz R (2002) Gene 301:61–66CrossRefGoogle Scholar
  21. 21.
    de las Rivas B, Marcobal Á, Carrascosa AV, Muñoz R (2006) J Food Protect 69:2509–2514Google Scholar
  22. 22.
    Marcobal Á, de las Rivas B, Moreno-Arribas V, Muñoz R (2005) J Food Protect 68:874–878Google Scholar
  23. 23.
    Sambrook J, MacCallum EF, Russel D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Lab Press, New YorkGoogle Scholar
  24. 24.
    Santos WC, Souza MR, Cerqueira MMOP, Glória MBA (2003) Food Chem 81:595–606CrossRefGoogle Scholar
  25. 25.
    Marino M, Maifreni M, Bartolomeoli I, Rondinini G (2008) J Appl Microbiol 105:540–549CrossRefGoogle Scholar
  26. 26.
    Griswold AR, Chen YYM, Burne RA (2004) J Bacteriol 186:1902–1904CrossRefGoogle Scholar
  27. 27.
    de las Rivas B, Marcobal A, Muñoz R (2005) FEMS Microbiol Lett 44:367–372CrossRefGoogle Scholar
  28. 28.
    Torriani S, Gatto V, Sembeni S, Tofalo R, Suzzi G, Belletti N, Gardini F, Bover-Cid S (2008) J Food Protect 71:93–101Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Leona Buňková
    • 1
    Email author
  • František Buňka
    • 2
  • Michaela Hlobilová
    • 1
  • Zuzana Vaňátková
    • 2
  • Dana Nováková
    • 3
  • Vladimír Dráb
    • 4
  1. 1.Department of Lipids, Tensides and Cosmetics Technology, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  2. 2.Department of Food Engineering, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  3. 3.Czech Collection of Microorganisms, Institute of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  4. 4.Cultures Collection of Dairy Microorganisms LaktofloraMILCOMTáborCzech Republic

Personalised recommendations