European Food Research and Technology

, Volume 229, Issue 3, pp 435–441

In vivo study of antiallergenicity of ethanol extracts from Sargassum tenerrimum, Sargassum cervicorne and Sargassum graminifolium turn

  • Samee Haider
  • Zhenxing Li
  • Hong Lin
  • Khalid Jamil
  • Bang Ping Wang
Original Paper


Food allergy has becoming the serious threat in the world for which the search of an effective anti-allergic drug is the demand of time. Keeping in view of the potentiality of seaweeds, the ethanol extracts from Sargassum tenerrimum (ST), Sargassum cervicorne (SC), and Sargassum graminifolium turn (SG) have been studied in vivo for its antiallergenicity through passive cutaneous anaphylaxis (PCA) and active cutaneous anaphylaxis (ACA) in female BALB/c mice. Intraperitoneal administration of these ethanol extracts inhibit mouse PCA and ACA in a dose-dependent manner using ovalbumin (OVA) and shrimp allergen as triggering agents to induce allergenicity over mice. The extract of ST containing phlorotannin has been found most active over the suppression of PCA triggered by OVA and shrimp with IC50 values of 25.64 and 40.98 mg/kg, respectively and an efficacy comparable to that of an anti-allergic drug disodiumcromoglycate. Similarly, ST inhibits ACA triggered by ova and shrimp allergen in the mouse, with 50% suppression at 25.5 and 43.53 mg/kg, respectively. The results presented here show that these extracts are active on the studied models among which ethanol extract of ST was the most potent, leading toward the promising development of a new class of anti-allergic drugs.


Passive cutaneous anaphylaxis Active cutaneous anaphylaxis Shrimp allergen Ovalbumin IgE Seaweeds 


  1. 1.
    Meltzer EO, Grant JA (1999) Ann Allergy Asthma Immunol 83:455–463CrossRefGoogle Scholar
  2. 2.
    Sicherer SH, Munoz-Furlong A, Sampson HA (2003) J Allergy Clin Immunol 112:1203–1207CrossRefGoogle Scholar
  3. 3.
    Inagaki N, Nagai H (2001) Jpn J Pharmacol 86:275–280CrossRefGoogle Scholar
  4. 4.
    Barnes PJ, Pedersen S, Busse WW (1998) Am J Respir Crit Care Med 157:S1–S53Google Scholar
  5. 5.
    Barnes PJ (1999) Nature 402(Suppl):B31–B38CrossRefGoogle Scholar
  6. 6.
    Marshall GD (2000) J Allergy Clin Immunol 106:303–309CrossRefGoogle Scholar
  7. 7.
    Thompson HL, Metcalfe DD (1991) In: Matsson P, Ahlstedt S, Venge P, Thorell J (eds) Academic Press, London, pp 87–107Google Scholar
  8. 8.
    Ishizaka T (1981) J Allergy Clin Immunol 67:90–96CrossRefGoogle Scholar
  9. 9.
    Ranadive NS, Dhanari N (1980) Int Arch Allergy Appl Immunol 61:9–18Google Scholar
  10. 10.
    Fujiki H, Suganuma M, Okabe S, Sueoka N, Komori A, Sueoka E, Kozu T, Tada Y, Suga K, Imai K, Nakachi K (1998) Mutat Res 402:307–310Google Scholar
  11. 11.
    Larson RA (1988) Phytochemistry 27:969–978CrossRefGoogle Scholar
  12. 12.
    Rice-Evans CS, Miller NJ, Paganga G (1996) Free Radic Biol Med 20:933–956CrossRefGoogle Scholar
  13. 13.
    Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS (2001) Mutat Res 1:243–268Google Scholar
  14. 14.
    Kanda T, Akiyama H, Yanagida A, Tanabe M, Goda Y, Toyoda M, Teshima R, Saito Y (1998) Biosci Biotechnol Biochem 62:1284–1289CrossRefGoogle Scholar
  15. 15.
    Matsuo N, Yamada K, Shoji K, Mori M, Sugano M (1997) Allergy 52:58–64CrossRefGoogle Scholar
  16. 16.
    Ragan MA, Glombitza KW (1986) Prog Physiol Res 4:129–241Google Scholar
  17. 17.
    Sugiura Y, Matsuda K, Yamada Y, Nishikawa M, Shioya K, Katsuzaki H, Imai K, Amano H (2006) Biosci Biotechnol Biochem 70:60417-1-5Google Scholar
  18. 18.
    Teshima R, Akiyama H, Akasaka R, Goda Y, Toyoda M, Sawada J (1998) Toxicol Lett 95:109–115CrossRefGoogle Scholar
  19. 19.
    Rossi M, Ruvo M, Marasco D, Colombo M, Cassani G, Verdoliva A (2008) Mol Immunol 45:226–234CrossRefGoogle Scholar
  20. 20.
    Kim MM, Ta QV, Mendis E, Rajapakse N, Jung WK, Byun HG, Jeon YJ, Kim SK (2006) Life Sci 79(15):1436–1443CrossRefGoogle Scholar
  21. 21.
    Yuan YV, Bone DE, Carrington MF (2005) Food Chem 91(3):485–494CrossRefGoogle Scholar
  22. 22.
    Waterman PG, Mole S (eds) (1994) Analysis of phenolic plant metabolites. Blackwell, OxfordGoogle Scholar
  23. 23.
    Inagaki N, Goro S, Nagai H, Koda A (1985) Int Arch Allergy Appl Immunol 78:113–117Google Scholar
  24. 24.
    Kobayashi M, Hasimoto Y, Taniyuchi S, Tanabe S (2004) Int J Mol Med 13(6):821–827Google Scholar
  25. 25.
    Inagaki N, Miura T, Nagai H, Koda A (1992) Jpn J Pharmacol 59:201–208CrossRefGoogle Scholar
  26. 26.
    Gupta PP, Srimal RC, Srivastava M, Singh KL, Tandon JS (1995) Pharmaceutical Biol 33(1):70–72CrossRefGoogle Scholar
  27. 27.
    Takahashi N, Aramaki Y, Tsuchia S (1990) J Pharmacobiol Dyn 13:414–420Google Scholar
  28. 28.
    Kakegawa H, Matsumoto H, Satoh T (1985) Chem Pharm Bull 33(2):642–646Google Scholar
  29. 29.
    Matsumoto T, Shibata T (1998) Eur Arch Otorhinolaryngol 255:359–364CrossRefGoogle Scholar
  30. 30.
    Huby RD, Dearman RJ, Ian K (2000) Toxicol Sci 55:235–246CrossRefGoogle Scholar
  31. 31.
    Ishihara K, Oyamada C, Matsushima R, Murata M, Muraoka T (2005) Biosci Biotechnol Biochem 69(10):1824–1830CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Samee Haider
    • 1
    • 2
  • Zhenxing Li
    • 1
  • Hong Lin
    • 1
  • Khalid Jamil
    • 2
  • Bang Ping Wang
    • 1
  1. 1.Food Safety Laboratory, College of Food Science and EngineeringOcean University of ChinaQingdaoPeople’s Republic of China
  2. 2.Food and Marine Resources Research CentreKarachiPakistan

Personalised recommendations