Advertisement

European Food Research and Technology

, Volume 229, Issue 1, pp 63–72 | Cite as

Acrylamide formation in a cookie system as influenced by the oil phenol profile and degree of oxidation

  • Gema Arribas-Lorenzo
  • Vincenzo Fogliano
  • Francisco J. Morales
Original Paper

Abstract

The purpose of this study was to investigate the effect of the olive oil phenolic compounds as well as of thermoxidised oil on the formation of acrylamide in a cookies system. Three virgin olive oils having different phenolic profile and a thermoxidised sunflower oil were selected. Cookies were baked at 190 °C for different times (8–16 min) following a basic recipe where type of oil was the variable. Additionally to acrylamide (AA), other parameters such as colour, moisture, antioxidant activity (AOA), and hydroxymethylfurfural (HMF) were measured. Results showed that concentration and composition of phenolic moiety of virgin olive oil significantly affect the acrylamide formation, particularly at prolonged baking time. Virgin olive oil with a higher dihydroxy/monohydroxy ratio was more efficient in the AA mitigation and AA was reduced up to 20%. Colour and AOA were not significantly different among the three types of oils. However, AA is dramatically increased when thermoxidised oil is used with a parallel increase of browning and HMF. It was concluded that lipid oxidation products should be considered as an important factor in acrylamide formation during baking of fat-rich products.

Keywords

Acrylamide cookie Olive oil Sunflower oil Phenolic compounds Thermoxidation Carbonyl compounds 

Notes

Acknowledgments

Assunta Siani and Edoardo Capuano are thanked for the VOO sampling and technical assistance. This work was carried out in the framework of COST 927-Thermally processed foods: possible health implication. Research has been partly fund by Consejeria Educación y Ciencia (CAM) under project (ANALISYC Program, S-505/AGR-0312) and Comunidad de Madrid (PhD grant Gema Arribas-Lorenzo).

References

  1. 1.
    LoPachin RM, Lehning EJ (1994) Neurotox 15:247–260Google Scholar
  2. 2.
    Friedman MA, Dulak LH, Stedham AM (1995) Fund Appl Toxicol 27:95–105CrossRefGoogle Scholar
  3. 3.
    Segerbäck D, Callemann J, Schroeder JL, Costa LG, Faustman EM (1995) Carcinogenesis 16:1161–1165CrossRefGoogle Scholar
  4. 4.
    RC IA (1994) Acrylamide. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  5. 5.
    Tareke E, Rydberg P, Karlsson P, Eriksson S, Tornqvist M (2002) J Agric Food Chem 50:4998–5006CrossRefGoogle Scholar
  6. 6.
    WHO/JECFA (2005) 64th meeting, Rome, 7–17 Feb 2005. http://www.who.int/ipcs/food/jecfa/summaries/en/summary_report_64_final.pdf
  7. 7.
    Boon PE, Mul A, van der Voet H, van Donkersgoed G, Brette M, van Klaveren JD (2005) Mutat Res Genet Toxicol Environ Mutagenesis 580:143–155CrossRefGoogle Scholar
  8. 8.
    Becalski A, Lau BPY, Lewis D, Seaman SW (2003) J Agric Food Chem 51:802–808CrossRefGoogle Scholar
  9. 9.
    Yaylayan VA, Wnorowski A, Perez-Locas C (2003) J Agric Food Chem 51:1753–1757CrossRefGoogle Scholar
  10. 10.
    Gertz C, Klostermann S (2002) Eur J Lipid Sci Technol 104:762–771CrossRefGoogle Scholar
  11. 11.
    Umano K, Shibamoto T (1987) J Agric Food Chem 35:909–912CrossRefGoogle Scholar
  12. 12.
    CIAA (2007) Confederation of the Food and Drink Industries in the UE. The CIAA acrylamide “Toolbox”. Rev. 11, December, 2007. http://www.ciaa.be/documents/brochures/toolbox%20rev11%nov%202007final.pdf
  13. 13.
    Morales F, Capuano E, Fogliano V (2008) Ann N Y Acad Sci 1126:89–100CrossRefGoogle Scholar
  14. 14.
    Claus A, Carle R, Schieber A (2008) J Cereal Sci 47:118–133CrossRefGoogle Scholar
  15. 15.
    Friedman M, Levin CE (2008) J Agric Food Chem 56:6113–6140CrossRefGoogle Scholar
  16. 16.
    Tareke E. (2003) PhD thesis, Department of Environmental Chemistry, Stockholm University, SwedenGoogle Scholar
  17. 17.
    Vattem DA, Shetty K (2003) Innov Food Sci Emerg Technol 4:331–338CrossRefGoogle Scholar
  18. 18.
    Rydberg P, Eriksson S, Tareke E, Karlsson P, Ehrenberg L, Tornqvist M (2003) J Agric Food Chem 51:7012–7018CrossRefGoogle Scholar
  19. 19.
    Zamora R, Hidalgo F (2008) J Agric Food Chem 56:6075–6080CrossRefGoogle Scholar
  20. 20.
    Mestdagh F, De Meulenaer B, Van Peteghem C (2007) Food Chem 100:1153–1159CrossRefGoogle Scholar
  21. 21.
    Hedegaard RV, Granby K, Franden H, Thygesen J, Leif HS (2008) Eur Food Res Technol 227:519–525CrossRefGoogle Scholar
  22. 22.
    Gökmen V, Acar OC, Koksel H, Acar J (2007) Food Chem 104:1136–1142CrossRefGoogle Scholar
  23. 23.
    Summa C, Wenzl T, Brohee M, De la Calle B, Anklam E (2006) J Agric Food Chem 54:853–859CrossRefGoogle Scholar
  24. 24.
    Napolitano A, Morales F, Sacchi R, Fogliano V (2008) J Agric Food Chem 56:2034–2040CrossRefGoogle Scholar
  25. 25.
    Visioli F, Galli C (1998) J Agric Food Chem 46:4292–4296CrossRefGoogle Scholar
  26. 26.
    Persson E, Graziani G, Ferracane R, Fogliano V, Skog K (2003) Food Chem Toxicol 41:1587–1597CrossRefGoogle Scholar
  27. 27.
    AOAC Official Methods of Analysis (1980) 13th edn, Association of Official Analytical Chemists, Washington, DC, pp 440–441Google Scholar
  28. 28.
    Fee JA, Teitelbaum HD (1972) Biochem Biophys Res Commun 49:150–153CrossRefGoogle Scholar
  29. 29.
    Cortesi N, Ponziani A, Fedeli E (1981) Rivista-Italiana-delle-Sostanze-Grasse 58:108–114Google Scholar
  30. 30.
    Singleton VL, Rossi A (1965) Am J Enol Vitic 16:144–158Google Scholar
  31. 31.
    Psomiadou E, Tsimidou M, Boskou D (2000) J Agric Food Chem 48:1770–1775CrossRefGoogle Scholar
  32. 32.
    Monti SM, Ritieni A, Sacchi R, Skog K, Borgen E, Fogliano V (2001) J Agric Food Chem 49:3969–3975CrossRefGoogle Scholar
  33. 33.
    Rufián-Henares JA, Arribas-Lorenzo G, Morales FJ (2007) Food Addit Contam 24:343–350CrossRefGoogle Scholar
  34. 34.
    Morales FJ, Arribas-Lorenzo G (2008) Food Chem 109:421–425CrossRefGoogle Scholar
  35. 35.
    García-Villanova B, Guerra-Hernández E, Martinez-Gómez E, Montilla J (1993) J Agric Food Chem 41:1254–1255CrossRefGoogle Scholar
  36. 36.
    Serpen A, Gökmen V, Pellegrini N, Fogliano V (2008) J Cer Sci 48:816–820CrossRefGoogle Scholar
  37. 37.
    Association of Official Analytical Chemists AOAC (1995) Official methods of the association of official analytical chemists, 16th edn. Washington, DCGoogle Scholar
  38. 38.
    CIE Colorimetric Committee (1974) Technical notes: working program on colour differences. J Op Soc Am 64:896–897Google Scholar
  39. 39.
    Francis FJ, Clydesdale FH (1975) Food colorimetry theory and applications. AVI Publishing, Wesport, CT, pp 131–224Google Scholar
  40. 40.
    Gökmen V, Acar OC, Arribas-Lorenzo G, Morales FJ (2008) J Food Eng 87:380–385CrossRefGoogle Scholar
  41. 41.
    Taeymans J, Wood P, Ashby I, Blank A, Studer RH, Stadler P, Gondé P, Van Eijck S, Lalljie H, Lingnert M, Lindblom R, Matissek D, Müller D, Tallmadge J, O’Brien S, Thompson D, Whitmore T (2004) Crit Rev Food Sci Nutr 44:323–347CrossRefGoogle Scholar
  42. 42.
    AOCS (1998) In: Firestone D (ed) Method Cd 8–53. Official methods and recommended practices of the American Oil Chemists’ Society, 5th edn. American Oil Chemists’ Society, Champaign, ILGoogle Scholar
  43. 43.
    Zamora R, Hidalgo FJ (2005) Crit Rev Food Sci Nutr 45:49–59CrossRefGoogle Scholar
  44. 44.
    Ehling S, Hengel M, Shibamoto T (2005) In: Friedman M, Mottram DS (eds) Chemistry and safety of acrylamide in food. Springer, New York, pp 223–233Google Scholar
  45. 45.
    Yuan Y, Zhao G-H, Hu X-S, Wu J-H, Liu J, Chen F (2008) Eur Food Res Technol 226:1301–1307CrossRefGoogle Scholar
  46. 46.
    Frankel EN, Huang S-H, Aeschbach R, Prior E (1996) J Agric Food Chem 44:131–135CrossRefGoogle Scholar
  47. 47.
    Frenkel EN (2005) Lipid oxidation, 2nd edn, Chap 4. The Oily Press, BridgwaterGoogle Scholar
  48. 48.
    Gertz C (2004) Eur J Lipid Sci Technol 106:736–745CrossRefGoogle Scholar
  49. 49.
    Nawar WW (1998) Grasas y Aceites 49:271–274Google Scholar
  50. 50.
    Ait-Ameur L, Rega B, Giampaoli P, Trystram G, Birlouez-Aragon I (2008) Food Chem 111:758–763CrossRefGoogle Scholar
  51. 51.
    Hidalgo FJ, Zamora R (2004) J Agric Food Chem 52:7126–7131CrossRefGoogle Scholar
  52. 52.
    Gertz C, Klostermann S, Kochhar SP (2003) Oleagineux Corps Gras Lipides 10:297–303Google Scholar
  53. 53.
    Mestdagh M, Castelein P, Van Peteghem C, De Meulenaer B (2008) J Agric Food Chem 65:6141–6144CrossRefGoogle Scholar
  54. 54.
    Nicoli MC, Anese M, Parpinel M (1999) Trends Food Sci Technol 10:94–100CrossRefGoogle Scholar
  55. 55.
    Mustafa A, Andersson R, Rosen H, Kamal-Eldin A, Aman P (2005) J Agric Food Chem 53:5985–5989CrossRefGoogle Scholar
  56. 56.
    Surdyk N, Rosen J, Andersson R, Aman P (2004) J Agric Food Chem 52:2047–2051CrossRefGoogle Scholar
  57. 57.
    Hidalgo FJ, Zamora R (2000) Grasas y Aceites 51:35–49CrossRefGoogle Scholar
  58. 58.
    Oliviero T, Capuano E, Cammerer B, Fogliano V (2009) J Agric Food Chem 57:147–152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gema Arribas-Lorenzo
    • 1
  • Vincenzo Fogliano
    • 2
  • Francisco J. Morales
    • 1
    • 3
  1. 1.Consejo Superior de Investigaciones CientíficasInstituto de Ciencia y Tecnología de los Alimentos y Nutrición (formerly Instituto del Frío)MadridSpain
  2. 2.Dipartimento di Scienza degli AlimentiUniversity of Napoli “Federico II”PorticiItaly
  3. 3.Instituto del Frío, CSICMadridSpain

Personalised recommendations