Advertisement

European Food Research and Technology

, Volume 228, Issue 6, pp 895–901 | Cite as

Optimization of culture medium for yellow pigments production with Monascus anka mutant using response surface methodology

  • Bo Zhou
  • Jufang Wang
  • Yuewu Pu
  • Mingjun Zhu
  • Shiming Liu
  • Shizhong LiangEmail author
Original Paper

Abstract

In our laboratory, one Monascus anka mutant able to produce high yield of yellow pigments screened by physical and chemical combination mutagenesis was obtained. This study evaluated peptone, NH4NO3 and KH2PO4 as the most significant variables for Monascus yellow pigment production by this M. anka mutant MYM in submerged fermentation. Response surface methodology (RSM) optimized these nutrient parameters for maximum yellow pigment production (87.24 OD units), which resulted at 10.3 g/L peptone, 11.9 g/L NH4NO3 and 4.7 g/L KH2PO4 in the medium. According to the fitting equation, through five replication experiments under the optimized conditions, the average yellow pigment production obtained was 88.14 OD units for flask cultivation and 92.45 OD units for 5 L fermenter cultivation. Meanwhile, the citrinin could not be detected by HPLC method.

Keywords

Monascus anka mutant Response surface methodology Monascus yellow pigments Nutrient parameters Citrinin 

Notes

Acknowledgments

One of authors (Bo Zhou) thank Ph.D. Yuan for editing this manuscript.

References

  1. 1.
    Simone Pereira Alves, Daniel Mares Brμm, Édira Castello Branco de Andrade, Annibal Duarte Pereira Netto (2008) Food Chem 107(1):489–496Google Scholar
  2. 2.
    Sato S, Kitamura H, Chino M, Takei Y, Hiruma M, Nomura M (2007) Food Chem Toxicol 45(8):1537–1544CrossRefGoogle Scholar
  3. 3.
    Chen L, Ding L, Zhang H, Li J, Wang Y, Wang X, Qu C, Zhang H (2006) Carthami nalytica Chimica Acta 58(1):75–82CrossRefGoogle Scholar
  4. 4.
    Takaichi S, Maoka T, Akimoto N, Sorokin DY, Banciue H, Kuenen JG (2004) Tetrahedron Lett 45:8303–8305CrossRefGoogle Scholar
  5. 5.
    Eisenbarth S, Steffan B (2000) Tetrahedron 56:363–365CrossRefGoogle Scholar
  6. 6.
    Shier WT, Lao Y, Steele TW, Abbas HK (2005) Bioorg Chem 33:426–438CrossRefGoogle Scholar
  7. 7.
    Misono Y, Ito A, Matsumoto J, Sakamoto S, Yamaguchid K, Ishibashi M (2003) Tetrahedron Lett 44:4479–4481CrossRefGoogle Scholar
  8. 8.
    Blanc PJ, Loret MO, Santerre AL, Pareilleux A, Promeı D, Promeı JC, Laussac JP, Goma G (1994) J Food Sci 9:862–865CrossRefGoogle Scholar
  9. 9.
    Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M (2000) J Agr Food Chem 48:5220–5225CrossRefGoogle Scholar
  10. 10.
    Wild D, Toth G, Hμmpf HU (2002) J Agr Food Chem 50:3999–4002CrossRefGoogle Scholar
  11. 11.
    Juzlova P, Martinkova L, K-ren V (1996) J Ind Microbiol 16:163–170CrossRefGoogle Scholar
  12. 12.
    Sato K, Goda Y, Sakamoto SS, Shibata H, Maitani T, Yamada T (1997) Chem Pharm Bull 45:227–229Google Scholar
  13. 13.
    Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Teng SS, Feldheim W (2000) J Ind Microbiol Biotechnol 25:141–146CrossRefGoogle Scholar
  14. 14.
    Kurono M, Nakanish K, Shindo K, Tada M (1963) J Chem Pham Bull 11:359–362Google Scholar
  15. 15.
    Endo A, Komagata D, Shimada H, Monakolin M (1986) J Antibiot 39:1670–1673Google Scholar
  16. 16.
    Hossain CF, Okuyama E, Yamazaki M (1996) Pharm Bull 44:1535–1539Google Scholar
  17. 17.
    Su YC, Wang JJ, Lin TT (2003) J Ind Microbiol Biotechnol 30:41–46CrossRefGoogle Scholar
  18. 18.
    Blanc PJ, Loret MO, Goma G (1995) Biotechnol Lett 17:291–294CrossRefGoogle Scholar
  19. 19.
    Ciegler A (1977) Appl Environ Microbiol 33:1004–1006Google Scholar
  20. 20.
    Wu MT (1974) Appl Microbiol 27:427–428Google Scholar
  21. 21.
    Kim HJ, Kim HJ, Oh HJ, Shin CS (2002) Process Biochem 38:649–655CrossRefGoogle Scholar
  22. 22.
    Hamdi M, Blanc PJ, Goma G (1996) Process Biochem 31:543–547CrossRefGoogle Scholar
  23. 23.
    Hajjaj H, Blanc PJ, Groussac E, Uribelarrea JL, Goma G, Loubiere P (2000) Enzyme Microb Technol 27:619–625CrossRefGoogle Scholar
  24. 24.
    Pastrana L, Blane PJ, Santerre AL, Loret MO, Goma G (1995) Process Biochem 30:333–341CrossRefGoogle Scholar
  25. 25.
    Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y (2004) Phytochem 65:2569–2575CrossRefGoogle Scholar
  26. 26.
    Yongsmith B, Krairak S, Bavavoda R (1994) J Ferment Bioeng 78:223–228CrossRefGoogle Scholar
  27. 27.
    Buchanan RL, Philips JG (1990) J Food Protect 53:370–376Google Scholar
  28. 28.
    Haltrich D, Press M, Steiner W (1993) Enzyme Microb Technol 15:854–860CrossRefGoogle Scholar
  29. 29.
    Prapulla SG, Jacob S, Chand N, Rajalakshmi D, Karanth NG (1992) Biotechnol Bioeng 40:965–969CrossRefGoogle Scholar
  30. 30.
    Zertuche L, Zall RR (1985) Biotechnol Bioeng 27:547–554CrossRefGoogle Scholar
  31. 31.
    Yongsmith B, Kitprechavanich V, Chitradon L, Chaisrisook C, Budda N (2000) J Mol Catal B Enzym 10:263–272CrossRefGoogle Scholar
  32. 32.
    Plackett RL, Burman JP (1946) Boometrika 37:305–325CrossRefGoogle Scholar
  33. 33.
    Box GEP, Wilson KB (1951) J Roy Statistical Soc (Ser. B) 13:1–45Google Scholar
  34. 34.
    Yongsmith B, Tabloka W, Yongmanitchai W, Bavavoda R (1993) World J Microbiol Biotechnol 9:85–90CrossRefGoogle Scholar
  35. 35.
    Martinkova L, Patakova-Juzlova P, Kren V, Kucerova Z, Havlicek V, Olsovsky P, Hovorka O, Rihova B, Vesely D, Vesela D, Ulrichova J, Prikrylova V (1999) Food Addit Contam 16:15–24CrossRefGoogle Scholar
  36. 36.
    Ganrong Xu, Yun Chen, Huiling Yu (2003) Archiv fur Lebensmittelhygiene 4:82–84Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Bo Zhou
    • 1
  • Jufang Wang
    • 1
  • Yuewu Pu
    • 1
  • Mingjun Zhu
    • 1
  • Shiming Liu
    • 2
  • Shizhong Liang
    • 1
    Email author
  1. 1.School of Bioscience and BioengineeringSouth China University of TechnologyPanyu Campus cityPeople’s Republic of China
  2. 2.Department of Plant Soil and Agricultural SystemSouthern Illinois UniversityCarbondaleUSA

Personalised recommendations