Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli

Original Paper


In this study, the yields of exopolysaccharides (EPS) produced in situ during sourdough fermentations with Lactobacillus reuteri TMW 1.106 synthesizing glucan from sucrose were investigated under variation of the fermentation parameters dough yield (DY), pH, sucrose content and fermentation substrate. The obtained amounts of EPS after 1 day of fermentation were higher in softer (DY 500) than in firmer (DY 220) doughs. With the regulation of the pH to a constant value of 4.7, the optimum for EPS synthesis in liquid medium, the EPS production in dough also increased. The EPS yield could further be improved by additional sucrose fed-batch during fermentation. Fermentations with wheat flours, a rye-wheat mixture and rye bran with 10% sucrose as fermentation substrate showed, that the use of rye bran is a promising tool to get high dextran formation through L. reuteri even in the first 8 h of fermentation. Further, alternative production of oligosaccharides and organic acids from sucrose was investigated. Lactobacillus reuteri synthesized high amounts of acetic acid leading to low fermentation quotient values. In wheat doughs, the formation of maltooligosaccharides was observed. Confirmatory experiments with fructan producing Lactobacillus sanfranciscensis TMW 1.392 revealed the same trends with a few distinct differences, indicating that this approach is transferable to other EPS types and producers.


Lactobacillus reuteri Lactobacillus sanfranciscensis Exopolysaccharides Sourdough In situ production 


  1. 1.
    Hammes WP, Gänzle MG (1998) Sourdough breads and related products. In: Wood BJB (ed) Microbiology of fermented foods, 2nd edn edn. Chapman & Hall, London, pp 199–216Google Scholar
  2. 2.
    Clarke CI, Arendt EK (2005) A review of the application of sourdough technology to wheat breads. Adv Food Nutr Res 49:138–161Google Scholar
  3. 3.
    Brandt MJ (2007) Sourdough products for convenient use in baking. Food Microbiol 24:161–164CrossRefGoogle Scholar
  4. 4.
    Davidou S, Meste M, Le Debever E, Bekkaert D (1996) A contribution to the study of staling of white bread: effect of water and hydrocolloid. Food Hydrocolloid 10:375–383CrossRefGoogle Scholar
  5. 5.
    Rosell CM, Rojas JA, Benedito de Barber C (2001) Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloid 15:75–81CrossRefGoogle Scholar
  6. 6.
    De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177CrossRefGoogle Scholar
  7. 7.
    Duboc P, Mollet B (2001) Application of exopolysaccharides in the dairy industry. Int Dairy J 11:759–768CrossRefGoogle Scholar
  8. 8.
    Lacaze G, Wick M, Cappelle S (2007) Emerging fermentation technologies: development of novel sourdoughs. Food Microbiol 24:155–160CrossRefGoogle Scholar
  9. 9.
    Brandt MJ, Roth K, Hammes WP (2003) Effect of an exopolysaccharide produced by Lactobacillus sanfranciscensis LTH 1729 on dough and bread quality. In: de Vyust L (ed) Sourdough from fundamentals to application. Vrije Universiteit Brussels (VUB). IMDO, Brussels, p 80Google Scholar
  10. 10.
    Tieking M, Kaditzky S, Gänzle MG, Vogel RF (2003) Biodiversity and potential for baking applications of glycosyltransferases in lactobacilli for use in sourdough fermentation. In: de Vuyst L (ed) Sourdough, from fundamentals to applications. Vrije Universiteit Brussels (VUB). IMDO, Brussels, pp 58–59Google Scholar
  11. 11.
    Anonymous (2005) Opinion of the Scientific Committee on a request from EFSA related to a generic approach to the safety assessment by EFSA of microorganisms used in food/feed and the production of food/feed additives. EFSA J 226:1–12Google Scholar
  12. 12.
    Decock P, Cappelle S (2005) Bread technology and sourdough technology. Trend Food Sci Technol 16:113–120CrossRefGoogle Scholar
  13. 13.
    Van Hijum SAFT, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IGH (2006) Structure–function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70:157–176CrossRefGoogle Scholar
  14. 14.
    Korakli M, Vogel RF (2006) Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesized glycans. Appl Microbiol Biotechnol 71:790–803CrossRefGoogle Scholar
  15. 15.
    Kim D, Robty JF, Lee S-Y, Lee J-H, Kim Y-M (2003) Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reaction of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydr Res 338:1183–1189CrossRefGoogle Scholar
  16. 16.
    Kaditzky S, Behr J, Stocker A, Kaden P, Gänzle MG, Vogel RF (2008b) Influence of pH on the formation of glucan by Lactobacillus reuteri TMW 1.106 exerting a protective function against extreme pH values. Food Biotechnol (in press)Google Scholar
  17. 17.
    Tieking M, Ehrmann MA, Vogel RF, Gänzle MG (2005) Molecular and functional characterisation of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392. Appl Microbiol Biotechnol 66:655–663CrossRefGoogle Scholar
  18. 18.
    Tieking M, Kühnl W, Gänzle MG (2005) Evidence for formation of heterooligosaccharides by Lactobacillus sanfranciscensis during growth in wheat sourdough. J Agric Food Chem 53:2456–2462CrossRefGoogle Scholar
  19. 19.
    Korakli M, Pavlovic M, Gänzle MG, Vogel RF (2003) Exopolysaccharide and kestose production by Lactobacillus sanfranciscensis LTH2590. Appl Environ Microbiol 69:2073–2079CrossRefGoogle Scholar
  20. 20.
    Kaditzky S, Seitter M, Hertel C, Vogel RF (2008) Performance of Lactobacillus sanfranciscensis TMW 1.392 and its levansucrase deletion mutant in wheat dough and comparison of their impact on bread quality. Eur Food Res Technol 227:433–442CrossRefGoogle Scholar
  21. 21.
    Gänzle MG, Brandt M (2005) Begriffsbestimmungen und Definitionen von Sauerteig. In: Brandt MJ, Gänzle MG (eds) Handbuch Sauerteig, 6. Auflage, Behr’s Verlag, Hamburg, pp 9–14Google Scholar
  22. 22.
    Tieking M, Korakli M, Ehrmann MA, Gänzle MG, Vogel RF (2003) In situ production of exopolysaccharides during sourdough fermentation by intestinal and cereal isolates of lactic acid bacteria. Appl Environ Microbiol 69:945–952CrossRefGoogle Scholar
  23. 23.
    Schwab C, Gänzle MG (2005) Effect of membrane lateral pressure on the expression of fructosyltransferase in Lactobacillus reuteri. Syst Appl Microbiol 29:89–99CrossRefGoogle Scholar
  24. 24.
    Stolz P, Böcker G, Hammes WP, Vogel RF (1995) Utilization of electron acceptors by lactobacilli isolated from sourdough. I. Lactobacillus sanfrancisco. Z Lebensm Unters Forsch 201:91–96CrossRefGoogle Scholar
  25. 25.
    Korakli M, Rossmann A, Gänzle MG, Vogel RF (2001) Sucrose metabolism and exopolysaccharide production in wheat and rye sourdoughs by Lactobacillus sanfranciscensis. J Agric Food Chem 49:5194–5200CrossRefGoogle Scholar
  26. 26.
    Thiele C, Gänzle MG, Vogel RF (2002) Sample preparation for amino acid determination by integrated pulsed amperometric detection in foods. Anal Biochem 310:171–178CrossRefGoogle Scholar
  27. 27.
    Gobetti M, Corsetti A (1997) Lactobacillus sanfrancisco a key sourdough lactic acid bacterium: a review. Food Microbiol 14:175–187CrossRefGoogle Scholar
  28. 28.
    Röcken W (1999) Einfluss der Führungsbedingungen auf die Milch—und Essigsäurebildung während der Sauerteiggärung. In: Spicher G, Stephan H (eds) Handbuch Sauerteig, 5. Auflage. Behr’s Verlag, Hamburg, pp 127–139Google Scholar
  29. 29.
    Röcken W, Rick M, Reinkemeier M (1992) Controlled production of acetic acid in wheat sour doughs. Z Lebensm Unters Forsch 195:259–263CrossRefGoogle Scholar
  30. 30.
    Barber S, Báguena R, Bendito de Barber C, Martínez-Anaya MA (1991) Evolution of biochemical and rheological characteristics and breadmaking quality during a multistage wheat sour dough process. Z Lebensm Unters Forsch 192:46–52CrossRefGoogle Scholar
  31. 31.
    Barber B, Ortolá C, Barber S, Fernandéz F (1992) Storage of packaged white bread. III. Effects of sour dough and addition of acids on bread characteristics. Z Lebensm Unters Forsch 194:442–449CrossRefGoogle Scholar
  32. 32.
    Spicher G (1983) Baked goods. In: Rehm HJ, Reed G (eds) Biotechnology, vol 5. Verlag Chemie, Weinheim, pp 1–80Google Scholar
  33. 33.
    Neysens P, de Vuyst L (2005) Kinetics and modelling of sourdough lactic acid bacteria. Trends Food Sci Technol 16:95–103CrossRefGoogle Scholar
  34. 34.
    Kaditzky S (2008) Sucrose metabolism in lactobacilli and bifidobacteria. Doctoral thesis, Technische Universität MünchenGoogle Scholar
  35. 35.
    Liu S-Q, Asmundson RV, Gopal PK, Holland R, Crow VL (1998) Influence of reduced water activity on lactose metabolism by Lactococcus lactis subsp. cremoris at different pH values. Appl Environ Microbiol 64:2111–2116Google Scholar
  36. 36.
    Looijesteijn PJ, Hugenholtz J (1999) Uncoupling of growth and exopolysaccharides production by Lactococcus lactis subsp. cremoris NIZO B40 and optimization of its synthesis. J Biosci Bioeng 88:178–182CrossRefGoogle Scholar
  37. 37.
    Hansen BH, Andreasen MF, Nielsen MM, Larsen LM, Knudsen KEB, Meyer AS, Chrsitensen LP, Hansen A (2002) Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread-making. Eur Food Res Technol 214:33–42CrossRefGoogle Scholar
  38. 38.
    Salmenkallio-Marttila M, Katina K, Autio K (2001) Effects of bran fermentation on quality and microstructure of high-fibre wheat bread. Cereal Chem 78:429–435CrossRefGoogle Scholar
  39. 39.
    Lopez HW, Krespine V, Guy C, Messager A, Demigne C, Remesy C (2001) Prolonged fermentation of whole wheat sourdough reduces phytate level and increases soluble magnesium. J Agric Food Chem 49:2657–2662CrossRefGoogle Scholar
  40. 40.
    Palacios MC, Haros M, Sanz Y, Rosell CM (2008) Selection of lactic acid bacteria with high phytate degrading activity for application in whole wheat breadmaking. LWT Food Sci Technol 41:82–92CrossRefGoogle Scholar
  41. 41.
    Hansen A, Hansen B (1994) Influence of wheat flour type on the production of flavour compounds in wheat sourdoughs. J Cereal Sci 19:185–190CrossRefGoogle Scholar
  42. 42.
    Dols M, Simeon MR, Willemot R-M, Vignon MR, Monsan PF (1998) Structural characterization of the maltose acceptor-products synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Carbohydr Res 305:549–559CrossRefGoogle Scholar
  43. 43.
    Martin ML, Hoseney RC (1991) A mechanism of bread firming. II Role of starch hydrolysing enzymes. Cereal Chem 68:503–507Google Scholar
  44. 44.
    Rojas JA, Rosell CM, Bendito de Baber C (2001) Role of maltodextrins in the staling of starch gels. Eur Food Res Technol 212:364–368CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Technische MikrobiologieTechnische Universität MünchenFreisingGermany

Personalised recommendations