European Food Research and Technology

, Volume 228, Issue 2, pp 275–282 | Cite as

Intake of isoflavone-supplemented soy yogurt fermented with Enterococcus faecium lowers serum total cholesterol and non-HDL cholesterol of hypercholesterolemic rats

  • Elizeu Antonio Rossi
  • Daniela Cardoso Umbelino Cavallini
  • Iracilda Zepone Carlos
  • Regina Célia Vendramini
  • Ana Raimunda Dâmaso
  • Graciela Font de Valdez
Original Paper

Abstract

The aim of this study was to obtain an isoflavone-supplemented soy yogurt, fermented with Enterococcus faecium CRL 183 and Lactobacillus helveticus ssp jugurti, with suitable sensory properties and to assess the effects of the final product on blood lipids in hypercholesterolemic rats. Four isoflavone supplementation procedures were tested, in which the isoflavone was added at these stages: (1) before heat-treatment; (2) after heating and before fermentation; (3) after fermentation and (4) in the okara (by-product of soy milk) flour stirred into the fermented product when consumed. The products were subjected to a test of sensory acceptability. To assess their potential hypocholesterolemic properties in vivo, four groups of rats were used: control (C), hypercholesterolemic (H), hypercholesterolemic plus fermented product (HF) and hypercholesterolemic plus isoflavone-supplemented fermented product (HFI). Hypercholesterolemia was induced in rats of groups H, HF and HFI by feeding them on a commercial rat chow to which cholesterol and cholic acid had been added. Total, HDL and non-HDL cholesterol and triglycerides were measured in the blood of the rats. No significant sensorial differences were detected among the samples of soy yogurt supplemented with isoflavones at various processing stages. Rats fed a fermented soy product enriched with isoflavones (HFI group) had significantly (P < 0.05) less serum total cholesterol (15.5%) compared with rats fed a hypercholesterolemic diet (H group). Non-HDL cholesterol was less (P < 0.05) in rats fed a fermented soy product enriched or not with isoflavones (27.4 and 23.2%) compared to H group. The HDL-C and triglyceride concentrations did not differ significantly among the groups. It was possible to obtain an isoflavone-supplemented soy yogurt with satisfactory sensory characteristics. The resulting supplemented soy yogurt was capable of producing a lipid-lowering effect in hypercholesterolemic rats, relative to the animals that did not consume this product.

Keywords

Soy yogurt Isoflavones Lipid-lowering effects Probiotic Rats 

References

  1. 1.
    Goff DA, Bertoni AG, Kramer H, Bonds D, Blumenthal RS, Tsai MY, Bruce M, Psaty BM (2006) Circulation 113:647–656CrossRefGoogle Scholar
  2. 2.
    Pearson TA (2002) Circulation 105:886–892CrossRefGoogle Scholar
  3. 3.
    IV Diretriz Brasileira sobre Dislipidemias e Prevenção da Aterosclerose (2007) Arq Bras Cardiol 88:1–48Google Scholar
  4. 4.
    Basu A, Devaraj S, Jialal I (2006) Arterioscler Thromb Vasc Biol 26:995–1001CrossRefGoogle Scholar
  5. 5.
    Anthony MS, Clarkson TB, Hughes CL, Morgan TM, Burke GL (1996) J Nutr 126:43–50Google Scholar
  6. 6.
    Kirk EA, Sutherland P, Wang SA, Chait A, LeBoeuf RC (1998) J Nutr 128:954–959Google Scholar
  7. 7.
    Kudou S, Fleury Y, Welti D, Magnolato D, Uchida T, Kitamura K, Okubo K (1991) Agric Biol Chem 55:2227–2233Google Scholar
  8. 8.
    Anthony MS, Clarkson TB, Bullock BC, Wagne JD (1997) Arterioscler Thromb Vasc Biol 17:2524–2531Google Scholar
  9. 9.
    Song T, Lee SO, Murphy PA, Hendrich S (2006) Exp Biol Med 228:1063–1068Google Scholar
  10. 10.
    Yamakoshi J, Piskula MK, Izumi T, Tobe K, Saito M, Kataoka S, Obata A, Kikuchi M (2000) J Nutr 130:1887–1893Google Scholar
  11. 11.
    Grunewald KK (1982) J Food Sci 47:2078–2079CrossRefGoogle Scholar
  12. 12.
    Nguyen TDT, Kang JH, Lee J (2007) Food Microbiol 113:358–361CrossRefGoogle Scholar
  13. 13.
    Klaver FAM, Meer R (1993) Appl Environ Microbiol 59:120–124Google Scholar
  14. 14.
    Rossi EA, Giori GS, Holgado APR, Valdez GF (1994) Microbiol Alim Nutr 12:267–270Google Scholar
  15. 15.
    Rossi EA, Vendramini RC, Carlos IZ, Pey IC, Valdez GF (1999) Eur Food Res Technol 209:305–307CrossRefGoogle Scholar
  16. 16.
    Rossi EA, Vendramini RC, Carlos IZ, Ueiji IS, Squinzari M, Silva SI, Valdez GF (2000) Arq Bras Cardiol 74:213–216CrossRefGoogle Scholar
  17. 17.
    Rossi EA, Vendramini CR, Carlos IZ, Oliveira MG, Valdez GF (2003) Arch Latinoam Nutr 53:47–51Google Scholar
  18. 18.
    Rossi EA, Rosier I, Dâmaso AR, Carlos IZ, Vendramini RC, Abdalla DSP, Talarico VH, Minto DF (2004) Alim Nutr 15:93–99Google Scholar
  19. 19.
    Stone H, Sidel J (1993) Sensory evaluation practices. Academic Press, New York, p 338Google Scholar
  20. 20.
    Macfie HJH, Bratchell N, Greenhoff K, Vallis LV (1989) J Sens Stud 4:129–148CrossRefGoogle Scholar
  21. 21.
    Allain CA, Poon LS, Chan CSG, Richmond W, Fu PC (1974) Clin Chem 20:470–475Google Scholar
  22. 22.
    Bergmeyer HW (1974) Methods of enzymatic analysis. Academic Press, London, pp 1890–1893Google Scholar
  23. 23.
    Fossati P, Prencipe L (1982) Clin Chem 28:2077–2080Google Scholar
  24. 24.
    Liu J, Sempos C, Donahue RP, Dorn J, Trevisan M, Grundy SM (2005) Diabetes Care 28:1916–1921CrossRefGoogle Scholar
  25. 25.
    SAS I (2000) SAS/Stat user’s guide version 8.8, 2nd edn. SAS Institute, CaryGoogle Scholar
  26. 26.
    Gonzales S, Ibarracin G, Locascio R, Pesce Male M, Apella MC, Pesce R, Holgado A, Oliver G (1990) Microbiol Alim Nutr 8:349–354Google Scholar
  27. 27.
    Nikander E, Tiitinen A, Laitinen K, Tikkanen M, Ylikorkala O (2004) J Clin Endocrinol Metab 89:3567–3572CrossRefGoogle Scholar
  28. 28.
    Dewell A, Hollenbeck CB, Bruce B (2002) J Clin Endocrinol Metab 87:118–121CrossRefGoogle Scholar
  29. 29.
    Dalais FS, Ebeling PR, Kotsopoulos D, McGrath BP, Teede HJ (2003) Clin Endocrinol 58:704–709CrossRefGoogle Scholar
  30. 30.
    Damasceno NRT (2001) Influência das isoflavonas extraídas da soja na hipercolesterolemia e na aterosclerose experimental induzida pela caseína. Faculdade de Ciências Farmacêuticas, USP, São Paulo, p 118Google Scholar
  31. 31.
    Matsuda S, Norimoto F, Matsumoto Y, Ohba R, Teramoto Y, Ohta N, Ueda S (1992) J Ferment Bioeng 74:301–304CrossRefGoogle Scholar
  32. 32.
    Wang HJ, Murphy PA (1994) J Agric Food Chem 42:1666–1673CrossRefGoogle Scholar
  33. 33.
    Fukutake M, Takahashi M, Ishida K, Kawamura H, Sugimura T, Wakabayashi K (1996) Food Chem Toxicol 34:457–461CrossRefGoogle Scholar
  34. 34.
    Aussenac T, Lacombe S, Dayde J (1998) Am J Clin Nutr 68 (suppl):1480S–485SGoogle Scholar
  35. 35.
    Araújo JMA, Carlos JCS, Sedyama CS (1997) Ciênc Technol Alim 17:137–141Google Scholar
  36. 36.
    Carrão-Panizzi MC, Pinobeléia A, Ferreira S, Oliveira M, Kitamura K (1999) Pesq Agropec Bras 34:1045–1052Google Scholar
  37. 37.
    Bowles S, Demiate IM (2006) Ciênc Tecnol Alim 26:652–659Google Scholar
  38. 38.
    Rossi EA (2001) Alimentos funcionais. In: Damaso A (ed) Nutrição e exercícios na prevenção de doenças. MEDSI, Rio de Janeiro, pp 337–362Google Scholar
  39. 39.
    Zhang X, Shu XO, Gao YT, Yang G, Li H, Jin F, Zheng W (2003) J Nutr 133:2874–2878Google Scholar
  40. 40.
    Manzoni MJ, Rossi EA, Carlos IZ, Vendramini RC, Duarte ACGO, Dâmaso AR (2005) Nutrition 21:1018–1024CrossRefGoogle Scholar
  41. 41.
    Nestel PJ, Yamashita T, Sasahara T, Pomeroy S, Dart A, Komesaroff P, Owen A, Abbey M (1997) Arterioscler Thromb Vasc Biol 17:3392–3398Google Scholar
  42. 42.
    Hodgson JM, Puddey IB, Beilin LJ, Mori TA, Croft KD (1998) J Nutr 128:728–732Google Scholar
  43. 43.
    Crouse JR, Terry JG, Morgan TM, McGill BL, Davis DH, King T, Ellis JE, Burke GL (1998) Circulation 97:816 (abstract)Google Scholar
  44. 44.
    Cui Y, Blumenthal RS, Flaws JÁ, Whiteman MK, Langenberg P, Bachorik OS, Bush TL (2001) Arch Intern Med 161:1413–1419CrossRefGoogle Scholar
  45. 45.
    Jiang R, Schulze MB, Li T, Rifai N, Stampfer MJ, Rimm EB, Hu FB (2004) Diabetes Care 27:1991–1997CrossRefGoogle Scholar
  46. 46.
    Pischon T, Girman CJ, Sacks FM, Rifai N, Stampfer MJ, Rimm EB (2005) Circulation 112:3375–3383CrossRefGoogle Scholar
  47. 47.
    Teixeira SR, Potter SM, Weigel R, Hannum S, Erdman JW Jr, Hasler CM (2000) Am J Clin Nutr 71:1077–1084Google Scholar
  48. 48.
    Zhuo XG, Melby MK, Watanabe S (2004) J Nutr 134:2395–2400Google Scholar
  49. 49.
    Sacks FM, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston M (2006) Circulation 113:1034–1044CrossRefGoogle Scholar
  50. 50.
    Teede HJ, Dalais FS, Kotsopoulos D, Liang YL, Davis S, McGraph BP (2001) J Clin Endocrinol Metab 86:3053–3060CrossRefGoogle Scholar
  51. 51.
    Jenkins DJ, Kendall CW, Garsetti M, Rosenberg-Zang RS, Jackson CJ, Agarwal S, Rao AV, Diamands EP, Parker T, Faulkner D, Vuksan V, Vidgen E (2000) Metabolism 49:537–543CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Elizeu Antonio Rossi
    • 1
  • Daniela Cardoso Umbelino Cavallini
    • 1
    • 5
  • Iracilda Zepone Carlos
    • 2
  • Regina Célia Vendramini
    • 2
  • Ana Raimunda Dâmaso
    • 3
  • Graciela Font de Valdez
    • 4
  1. 1.Department of Food and Nutrition, Faculty of Pharmaceutical SciencesSão Paulo State UniversityAraraquaraBrazil
  2. 2.Department of Clinical Analysis, Faculty of Pharmaceutical SciencesSão Paulo State UniversityAraraquaraBrazil
  3. 3.Department of Health SciencesSão Paulo Federal UniversitySantosBrazil
  4. 4.Reference Center for Lactobacilos, CERELASan Miguel de Tucumán Argentina
  5. 5.Departamento de Alimentos e Nutrição, Faculdade de Ciências FarmacêuticasUniversidade Estadual Paulista Júlio de Mesquita FilhoAraraquaraBrazil

Personalised recommendations