Advertisement

European Food Research and Technology

, Volume 228, Issue 1, pp 145–151 | Cite as

Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage

  • Soo-Jin Heo
  • Seok-Chun Ko
  • Sung-Myung Kang
  • Hahk-Soo Kang
  • Jong-Pyung Kim
  • Soo-Hyun Kim
  • Ki-Wan Lee
  • Man-Gi Cho
  • You-Jin Jeon
Original Paper

Abstract

In this study, the cytoprotective effect of fucoxanthin, which was isolated from Sargassum siliquastrum, against oxidative stress induced DNA damage was investigated. Fucoxanthin, a kind of carotenoid, was pretreated to the medium and the protective effect was evaluated via 2′,7′-dichlorodihydrofluorescein diacetate, 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide, and comet assays. Intracellular reactive oxygen species were over produced by addition of hydrogen peroxide (H2O2), but the production was significantly reduced by the treatment with fucoxanthin. The fucoxanthin strongly enhanced cell viability against H2O2 induced oxidative damage and the inhibitory effect of cell damage was a dose-dependent manner. Furthermore, a protective effect against oxidative stress-induced cell apoptosis was also demonstrated via nuclear staining with Hoechst dye. These results clearly indicate that fucoxanthin isolated from S. siliquastrum possesses prominent antioxidant activity against H2O2-mediated cell damage and which might be a potential therapeutic agent for treating or preventing several diseases implicated with oxidative stress.

Keywords

Fucoxanthin Sargassum siliquastrum Cell damage Oxidative stress Reactive oxygen species 

Notes

Acknowledgements

This research was supported by a grant (M-2007-03) from the Marine Bioprocess Research Center of the Marine Bio 21 Center, funded by Ministry of Marine Affairs and Fisheries, Republic of Korea.

References

  1. 1.
    Schwarz K, Bertelsen G, Nissen LR, Gardner PT, Heinonen MI, Hopia A, Huynh-Ba T, Lambelet P, McPhail D, Skibsted LH, Tijburg L (2001) Eur Food Res Technol 212:319–328CrossRefGoogle Scholar
  2. 2.
    Farag RS, El-Baroty GS, Basuny AM (2003) Int J Food Sci Technol 38:81–87CrossRefGoogle Scholar
  3. 3.
    Heo SJ, Park EJ, Lee KW, Jeon YJ (2005) Bioresour Technol 96:1613–1623CrossRefGoogle Scholar
  4. 4.
    Jimenez-Escrig A, Jimenez-Jimenez I, Pulido R, Saura-Calixto F (2001) J Sci Food Agric 81:530–534CrossRefGoogle Scholar
  5. 5.
    Berhard K, Moss GP, Toth GY, Weedon BLC (1976) Tetrahedron Lett 17:115–118CrossRefGoogle Scholar
  6. 6.
    Yan X, Chuda Y, Suzuki M, Nagata T (1999) Biosci Biotechnol Biochem 63:605–607CrossRefGoogle Scholar
  7. 7.
    Hosokawa M, Kudo M, Maeda H, Kohno H, Tanaka T, Miyashita K (2004) Biochim Biophys Acta 1675:113–119Google Scholar
  8. 8.
    Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Biochem Biophys Res Commun 332:392–397Google Scholar
  9. 9.
    Kotake-Nara E, Asai A, Nagao A (2005) Cancer Lett 220:75–84CrossRefGoogle Scholar
  10. 10.
    Sugawara T, Matsubara K, Akagi R, Mori M, Hirata T (2006) J Agric Food Chem 54:9805–9810CrossRefGoogle Scholar
  11. 11.
    Mosmann T (1983) J Immunol Methods 65:55–63CrossRefGoogle Scholar
  12. 12.
    Singh NP (2000) Mutat Res 455:111–127Google Scholar
  13. 13.
    Gschwind M, Huber G (1995) J Neurochem 65:292–300CrossRefGoogle Scholar
  14. 14.
    Lizard G, Fournel S, Genestier L, Dhedin N, Chaput C, Flacher M, Mutin M, Panaye G, Revillard JP (1995) Cytometry 21:275–283CrossRefGoogle Scholar
  15. 15.
    Lee SE, Ju EM, Kim JH (2002) Exp Mol Med 34:100–106Google Scholar
  16. 16.
    Jung WK, Rajapakse N, Kim SK (2005) Eur Food Res Technol 220:535–539CrossRefGoogle Scholar
  17. 17.
    Ahn GN, Kim KN, Cha SH, Song CB, Lee J, Heo MS, Yeo IK, Lee NH, Jee YH, Kim JS, Heo MS, Jeon YJ (2007) Eur Food Res Technol 226:71–79CrossRefGoogle Scholar
  18. 18.
    Satoh T, Sakai N, Enokido Y, Uchiyama Y, Hatanaka H (1996) J Biochem 120:540–546Google Scholar
  19. 19.
    Halliwell B, Clement MV, Long LH (2000) FEBS Lett 486:10–13CrossRefGoogle Scholar
  20. 20.
    Al-Enezi KS, Alkhalaf M, Benov LT (2006) Free Radic Biol Med 40:1144–1151CrossRefGoogle Scholar
  21. 21.
    Zhang L, Yu H, Sun Y, Lin X, Chen B, Tan C, Cao G, Wang Z (2007) Eur J Pharmacol 564:18–25CrossRefGoogle Scholar
  22. 22.
    Strazzullo P, Puig JG (2007) Nutr Metab Cardiovasc Dis 17:409–414CrossRefGoogle Scholar
  23. 23.
    Kang HS, Chung HY, Jung HA, Son BW, Choi JS (2003) Chem Pharm Bull 51:1012–1014CrossRefGoogle Scholar
  24. 24.
    Cahyana AH, Shuto Y, Kinoshita Y (1992) Biosci Biotechnol Biochem 56:1533–1535CrossRefGoogle Scholar
  25. 25.
    Li K, Li XM, Ji NY, Wang BG (2007) Bioorg Med Chem 15:6627–6631CrossRefGoogle Scholar
  26. 26.
    Zhang Q, Li N, Liu W, Zhao Z, Li Z, Xu Z (2004) Carbohydr Res 339:105–111CrossRefGoogle Scholar
  27. 27.
    Kim SH, Choi DS, Athucorala Y, Jeon YJ, Senevirathne M, Rha CK (2007) Int J Food Sci Nutr 12:65–73Google Scholar
  28. 28.
    LeBel CP, Ischiopoulos H, Bondy SC (1992) Chem Res Toxicol 5:227–231CrossRefGoogle Scholar
  29. 29.
    Hu Z, Guan W, Wang W, Huang L, Xing H, Zhu Z (2007) Cell Biol Int 31:798–804CrossRefGoogle Scholar
  30. 30.
    Senthilmohan ST, Zhang J, Stanley RA (2003) Nutr Res 23:1199–1210CrossRefGoogle Scholar
  31. 31.
    Kerr JF, Gobe GC, Winterford CM, Harmon BV (1995) Methods Cell Biol 46:1–27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Soo-Jin Heo
    • 1
  • Seok-Chun Ko
    • 1
  • Sung-Myung Kang
    • 1
  • Hahk-Soo Kang
    • 2
  • Jong-Pyung Kim
    • 2
  • Soo-Hyun Kim
    • 3
  • Ki-Wan Lee
    • 1
  • Man-Gi Cho
    • 4
  • You-Jin Jeon
    • 1
    • 5
  1. 1.Faculty of Applied Marine ScienceCheju National UniversityJejuSouth Korea
  2. 2.KRIBBDaejeonSouth Korea
  3. 3.Department of Food BioengineeringCheju National UniversityJejuSouth Korea
  4. 4.Food and BiotechnologyDongseo UniversityPusanSouth Korea
  5. 5.Marine and Environmental Research InstituteCheju National UniversityJejuSouth Korea

Personalised recommendations