Comparison of rheological, fermentative and baking properties of gluten-free dough formulations

  • Anna Pruska-Kędzior
  • Zenon KędziorEmail author
  • Mateusz Gorący
  • Katarzyna Pietrowska
  • Anna Przybylska
  • Karolina Spychalska
Original Paper


This paper examines the fundamental rheological properties, capability of CO2 retention during proofing, and baking behaviour of gluten-free (GF) dough. Maize flour, maize starch, rice flour, and buckwheat flour formulations are compared. Apple pectin is used as the structuring agent. Rheologically, the GF dough formulations can be defined as physical gels of different viscoelasticity and structural networking. The curves of CO2 retention in the GF dough best fit with the asymmetric transition sigmoidal function. Some correlations between characteristic parameters of the transition sigmoids versus rheological parameters of the GF dough, the spread parameter n of Cole–Cole model and the shear-thinning consistency index k, were found. In baking tests, extending the proofing time improved the taste, aroma, and mouth feel of gluten-free breads, particularly when a sourdough step was applied or flaxseed was added to the formulation.


Gluten-free dough Rice Maize Buckwheat Rheology CO2 retention Baking test 


  1. 1.
    Ciclitira PJ, Ellis HJ, Lundin KEA (2005) Best Pract Res Clin Gastroenterol 19:359–371. doi: 10.1016/j.bpg.2005.01.003 CrossRefGoogle Scholar
  2. 2.
    Hamer RJ (2005) Biotechnol Adv 23:401–408. doi: 10.1016/j.biotechadv.2005.05.005 CrossRefGoogle Scholar
  3. 3.
    Gallagher E, Gormley TR, Arendt EK (2004) Trends Food Sci Technol 15:143–152. doi: 10.1016/j.tifs.2003.09.012 CrossRefGoogle Scholar
  4. 4.
    Taylor JRN, Schober TJ, Bean SR (2006) J Cereal Sci 44:252–271. doi: 10.1016/j.jcs.2006.06.009 CrossRefGoogle Scholar
  5. 5.
    Gallagher E, Kunkel A, Gormley TR, Arendt EK (2003) Eur Food Res Technol 218:44–48. doi: 10.1007/s00217-003-0818-9 CrossRefGoogle Scholar
  6. 6.
    Korus J, Achremowicz B (2004) Żywność (Food) 38:65–73. Google Scholar
  7. 7.
    Gambuś H, Gambuś F, Sabat R (2002) Żywność (Food) 9:99–112Google Scholar
  8. 8.
    Kiskini A, Argiri K, Kalogeropoulos M, Komaitis M, Kostaropoulos A, Mandala J, Kapsokefalou M (2007) Food Chem 102:309–316. doi: 10.1016/j.foodchem.2006.05.022 CrossRefGoogle Scholar
  9. 9.
    Gambuś H (2005) Żywność (Food) 45(Suppl):61–74.
  10. 10.
    Korus J, Grzelak K, Achremowicz K, Sabat R (2006) Food Sci Technol Int 12:489–495. doi: 10.1177/1082013206073072 CrossRefGoogle Scholar
  11. 11.
    Dłużewska E, Marciniak K, Dojczew D (2001) Żywność (Food) 9:57–67Google Scholar
  12. 12.
    Guarda A, Rosell CM, Benedito C, Galotto MJ (2004) Food Hydrocolloids 18:241–247. doi: 10.1016/S0268-005X(03) 00080-8 CrossRefGoogle Scholar
  13. 13.
    Lazaridou A, Duta D, Papageorgiou M, Belc N, Biliaderis CG (2007) J Food Eng 79:1033–1047. doi: 10.1016/j.jfoodeng.2006.03.032 CrossRefGoogle Scholar
  14. 14.
    Moore MM, Schober TJ, Dockery P, Arendt EK (2004) Cereal Chem 81:567–575CrossRefGoogle Scholar
  15. 15.
    Sanchez HD, Osella CA, De la Torre MA (2002) J Food Sci 67:416–419CrossRefGoogle Scholar
  16. 16.
    Arendt EK, Ryan LAM, Dal Bello F (2007) Food Microbiol 24:165–174. doi: 10.1016/ CrossRefGoogle Scholar
  17. 17.
    Katina K, Arendt E, Liukkonen KH, Autio K, Flander L, Poutanen K (2005) Trends Food Sci Technol 16:104–112. doi: 10.1016/j.tifs.2004.03.008 CrossRefGoogle Scholar
  18. 18.
    Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M (2007) Food Microbiol 24:187–196. doi: 10.1016/ CrossRefGoogle Scholar
  19. 19.
    Moore MM, Dal Bello F, Arendt EK (2008) Eur Food Res Technol 226:1309–1316. doi  10.1007/s00217-007-0659-z CrossRefGoogle Scholar
  20. 20.
    Goesaert H, Brijs K, Veraverbeke WS, Courtin CM, Gebruers K, Delcour JA (2005) Trends Food Sci Technol 16:12–30. doi: 10.1016/j.tifs.2004.02.011 CrossRefGoogle Scholar
  21. 21.
    Kokelaar JJ, Prins A (1995) J Cereal Sci 22:53–61CrossRefGoogle Scholar
  22. 22.
    Salt LJ, Wilde PJ, Georget D, Wellner N, Skeggs PK, Mills ENC (2006) J Cereal Sci 43:284–292. doi: 10.1016/j.jcs.2005.12.013 CrossRefGoogle Scholar
  23. 23.
    Gandikota S, MacRitchie F (2005) J Cereal Sci 42:157–163. doi: 10.1016/j.jcs.2005.02.007 CrossRefGoogle Scholar
  24. 24.
    Romano A, Toraldo G, Cavella S, Masi P (2007) J Food Eng 83:142–148. doi: 10.1016/j.jfoodeng.2007.02.014 CrossRefGoogle Scholar
  25. 25.
    Babin P, Della Valle G, Chiron H, Cloetens P, Hoszowska J, Pernot P, Reguerre AL, Salvo L, Dendievel R (2006) J Cereal Sci 43:393–397. doi: 10.1016/j.jcs.2005.12.002 CrossRefGoogle Scholar
  26. 26.
    Hailemariam L, Okos M, Campanella O (2007) J Food Eng 82:466–477. doi: 10.1016/j.jfoodeng.2007.03.006 CrossRefGoogle Scholar
  27. 27.
    Zhang J, Datta AK (2006) J Food Eng 75:78–89. doi: 10.1016/j.jfoodeng.2005.03.058 CrossRefGoogle Scholar
  28. 28.
    Pruska-Kedzior A, Kedzior Z, Klockiewicz-Kaminska E (2008) Eur Food Res Technol 227:199–207. doi  10.1007/s00217-007-0710-0 CrossRefGoogle Scholar
  29. 29.
    Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behavior. An introduction. Springer, BerlinGoogle Scholar
  30. 30.
    Baked goods, methods of assessment, Polish Standard PN-A-74108:1996Google Scholar
  31. 31.
    Lawton JW, Wilson CM (2003) Protein of the kernel. In: White PJ, Johnson LA (eds) Corn chemistry and technology, 2nd edn. American Association of Cereal Chemists Inc., St Paul, pp 313–354Google Scholar
  32. 32.
    Juliano BO (1985) Polysaccharides, proteins and lipids of rice. In: Juliano BO (ed) Rice chemistry and technology, 2nd edn. American Association of Cereal Chemists Inc., St Paul, pp 59–174Google Scholar
  33. 33.
    Pomeranz Y (1983) CRC critical reviews in food science nutrition 19:213–258CrossRefGoogle Scholar
  34. 34.
    Wei YM, Hu XZ, Zhang GQ, Quyang SH (2003) Nahrung/Food 47:114–116CrossRefGoogle Scholar
  35. 35.
    Lefebvre J, Pruska-Kedzior A, Kedzior Z, Lavenant L (2003) J Cereal Sci 38:257–267. doi: 10.1016/S0733-5210(03) 00025-0 CrossRefGoogle Scholar
  36. 36.
    Lefebvre J (2006) Rheol Acta 45:525–538. doi: 10.1007/s00397-006-0093-3 CrossRefGoogle Scholar
  37. 37.
    Pruska-Kędzior A (2006) Application of phenomenological rheology methods to quantification of wheat gluten viscoelastic properties. Scientific monographs, vol 373, The Agricultural University, Poznań, p 141 (in Polish)Google Scholar
  38. 38.
    Pruska-Kedzior A, Kedzior Z, Bera E, Hryciuk K, Golinska-Krysztofiak J (2005) Electron J Polish Agric Univ 8. (
  39. 39.
    Gujral HS, Guardiola I, Carbonell JV, Rosell CM (2003) J Agric Food Chem 51:3814–3818CrossRefGoogle Scholar
  40. 40.
    Sivaramakrishnan HP, Senge B, Chattopadhyay PK (2004) J Food Eng 62:37–45. doi: 10.1016/S0260-8774(03) 00169-9 CrossRefGoogle Scholar
  41. 41.
    Ferry J (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New YorkGoogle Scholar
  42. 42.
    Song Y, Zheng Q (2007) Trends Food Sci Technol 18:132–138. doi: 10.1016/j.tifs.2006.11.003 CrossRefGoogle Scholar
  43. 43.
    Rouillé J, Della Valle G, Lefebvre J, Sliwinski E, van Vliet T (2005) J Cereal Sci 42:45–57. doi: 10.1016/j.jcs.2004.12.008 CrossRefGoogle Scholar
  44. 44.
    Uthayakumaran S, Newberry M, Phan-Thien N, Tanner R (2002) Rheol Acta 41:162–172CrossRefGoogle Scholar
  45. 45.
    Petrofsky KE, Hoseney RC (1995) Cereal Chem 72:53–58Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Anna Pruska-Kędzior
    • 1
  • Zenon Kędzior
    • 1
    Email author
  • Mateusz Gorący
    • 1
  • Katarzyna Pietrowska
    • 1
  • Anna Przybylska
    • 1
  • Karolina Spychalska
    • 1
  1. 1.The August Cieszkowski Agricultural University, Institute of Food TechnologyPoznanPoland

Personalised recommendations