European Food Research and Technology

, Volume 227, Issue 4, pp 1243–1249 | Cite as

Extracts of plant cell cultures of Lavandula vera and Rosa damascena as sources of phenolic antioxidants for use in foods

  • Elena G. Kovatcheva-Apostolova
  • Milen I. Georgiev
  • Mladenka P. Ilieva
  • Leif H. Skibsted
  • Anja Rødtjer
  • Mogens Larsen Andersen
Original Paper


Ethanolic extracts of plant cell cultures of lavender (Lavandula vera) and rose (Rosa damascena) have been examined as potential food antioxidants. The L. vera cell extract quenched the radicals Fremy’s salt, DPPH (2,2-diphenyl-1-picrylhydrazyl radical), and ABTS·+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic) radical) more efficiently than the R. damascena extract. Also the L. vera extract inhibited lipid oxidation in a methyl linoleate emulsion more efficiently than the R. damascena extract. However, the L. vera extract had a prooxidative effect on the iron-based Fenton reaction in an aqueous model system. A similar effect was observed for pure rosmarinic acid, but not for the R. damascena extract. The addition of L. vera extract to minced chicken meat reduced lipid oxidation (measured as thiobarbituric acid reactive species) and the loss of α-tocopherol during cold storage after the meat was cooked. This suggests the antioxidative properties of L. vera extracts dominate in a real food system.


Cell culture Lavandula vera Rosa damascena Antioxidants Cooked meat 



This research was sponsored by the European Community as a part of the Access to Research Infrastructure action of the Improving Human Potential Programme in the LMC, Centre for Advanced Food Studies, The Royal Veterinary and Agricultural University, Department of Food Science.


  1. 1.
    Andersen ML, Lauridsen RK, Skibsted LH (2003) Optimising the use of phenolic compounds in foods. In: Johnson I, Williamson G (eds) Phytochemical functional foods. Woodhead Publishing, Cambridge, pp 315–346Google Scholar
  2. 2.
    Alfermann WW, Petersen M (1995) Plant Cell Tissue Organ Cult 43:199–205CrossRefGoogle Scholar
  3. 3.
    Dixon RA, Howles PJ, Lamb C, Korth K, He X-Z, Sewalt VJH, Kasmussen S (1999) Plant secondary metabolism: control points and prospects for genetic manipulation of phenylpropanoid biosynthesis. In: Fu TJ, Singh G, Curtis WR (eds) Plant cell and tissue culture for the production of food ingredients. Kluwer/Plenum Publishers, New York, pp 7–22Google Scholar
  4. 4.
    Ulbrich B, Wiesner W, Arens H (1985) Large-scale production of rosmarinic acid from plant cell cultures of Coleus blumei Benth. In: Neumann KN, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin, pp 293–303Google Scholar
  5. 5.
    Petersen M (1999) Biosynthesis and accumulation of rosmarinic acid in plant cell culture. In: Fu TJ, Singh G, Curtis WR (eds) Plant cell and tissue culture for the production of food ingredients. Kluwer/Plenum Publishers, New York, pp 61–74Google Scholar
  6. 6.
    Zhong JJ, Chen H, Chen F (2001) J Plant Biotechnol 3:107–112Google Scholar
  7. 7.
    Georgiev M, Pavlov A, Ilieva M (2004) Biotechnol Lett 26:855–856CrossRefGoogle Scholar
  8. 8.
    Ilieva M, Kozhuharova L, Pavlov A, Kovatcheva E (1994) Antimicrobial activity of phenolic compounds from cell culture of Lavandula vera MM. In: Bioactive substances in food of plant origin, vol 1. Proceeding of the international Euro Food Tox IV Conference, Olsztun, Poland, pp 172–177 Google Scholar
  9. 9.
    Kovatcheva E, Pavlov A, Koleva I, Ilieva M, Mihneva M (1996) Phytochemistry 43:1243–1244CrossRefGoogle Scholar
  10. 10.
    Kovatcheva E, Koleva I, Pavlov A, Ilieva M, Mincheva M, Konoushlieva M (2001) Food Chem 72:295–300CrossRefGoogle Scholar
  11. 11.
    Ilieva M, Pavlov A, Kovatcheva E (2002) Further research into Lavandula species: Cell cultures of Lavandula vera and rosmarinic acid production. In: Balchin L (ed) Genus Lavandula, Harwood Publishers, United KingdomGoogle Scholar
  12. 12.
    Georgiev M, Kovatcheva E, Pavlov A, Ilieva-Stoilova M (2003) Extraction of rosmarinic acid from Lavandula vera MM cell biomass. In: Jubilee conference with international participation 50 years. University of Food Technology, Plovdiv. Scientific works of UFT L, vol 3, pp 182–187Google Scholar
  13. 13.
    Kovatcheva E, Pavlov A, Kovatcheva P, Ilieva M, Kozhuharova L (2003) Antimicrobial and antiradical activities of plant cell culture of Rosa damascena Mill 1803. In: Jubilee conference with international participation 50 years. University of Food Technology, Plovdiv. Scientific works of UFT L, vol 3, pp 176–181Google Scholar
  14. 14.
    Sánchez-Moreno C (2002) Food Sci Technol Int 8:121–137. doi: 10.1106/108201302026770 CrossRefGoogle Scholar
  15. 15.
    Becker EM, Nissen L, Skibsted LH (2004) Eur Food Res Technol 219:561–571CrossRefGoogle Scholar
  16. 16.
    Linsmayer EM, Skoog F (1965) Physiol Plant 18:100–127CrossRefGoogle Scholar
  17. 17.
    Amerine MA, Ough CS (1980) Total phenolics—method for analysis of Musts and Wines. Wiley, New York, pp 181–184Google Scholar
  18. 18.
    Rødtjer A, Skibsted LH, Andersen ML (2006) Eur Food Res Technol 223:663–668. doi: 10.1007/s00217-005-0250-4 CrossRefGoogle Scholar
  19. 19.
    Tadolino B, Juliano C, Piu L, Franconi F, Cabrini L (2000) Free Radic Res 33:105–114CrossRefGoogle Scholar
  20. 20.
    Schwarz K, Bertelsen G, Nissen LR, Gardner PT, Heinonen MI, Hopia A, Huynh-Ba T, Lambelet P, McPhail D, Skibsted LH, Tijburg L (2001) Eur Food Res Technol 212:319–328CrossRefGoogle Scholar
  21. 21.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radic Biol Med 26:1231–1237CrossRefGoogle Scholar
  22. 22.
    Arts MJTJ, Dallinga JS, Voss H-P, Haenen GRMM, Bast A (2003) Food Chem 80:409–414CrossRefGoogle Scholar
  23. 23.
    Rødtjer A, Skibsted LH, Andersen ML (2006) Food Chem 99:6–14. doi: 10.1016/j.foodchem.2005.07.011 CrossRefGoogle Scholar
  24. 24.
    Madsen HL, Nielsen BR, Bertelsen G, Skibsted LH (1996) Food Chem 57:331–337CrossRefGoogle Scholar
  25. 25.
    Hu M, Skibsted LH (2002) Food Chem 76:327–333CrossRefGoogle Scholar
  26. 26.
    Vyncke W (1970) Fette Seifen Anstrichmittel 72:1084–1087CrossRefGoogle Scholar
  27. 27.
    Vyncke W (1975) Fette Seifen Anstrichmittel 77:239–240CrossRefGoogle Scholar
  28. 28.
    Sørensen G, Jørgensen SS (1996) Z Lebensm Unters 202:202–210Google Scholar
  29. 29.
    Buttriss JL, Diplock AT (1984) Methods Enzymol 105:131–138CrossRefGoogle Scholar
  30. 30.
    Huisman M, Madsen HL, Skibsted LH, Bertelsen G (1994) Lebensm Unters Forsch 198:57–59CrossRefGoogle Scholar
  31. 31.
    Madsen HL, Sørensen B, Skibsted LH, Bertelsen G (1998) Food Chem 63:173–180CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Elena G. Kovatcheva-Apostolova
    • 1
  • Milen I. Georgiev
    • 2
  • Mladenka P. Ilieva
    • 2
  • Leif H. Skibsted
    • 3
  • Anja Rødtjer
    • 3
  • Mogens Larsen Andersen
    • 3
  1. 1.Department of Analytical ChemistryUniversity of Food TechnologyPlovdivBulgaria
  2. 2.Department of Microbial Biosynthesis and Biotechnology, Laboratory in PlovdivInstitute of Microbiology, Bulgarian Academy of SciencesPlovdivBulgaria
  3. 3.Food Chemistry, Department of Food ScienceUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations