European Food Research and Technology

, Volume 227, Issue 4, pp 1215–1223 | Cite as

Relationship between rheological, textural and melting properties of dark chocolate as influenced by particle size distribution and composition

  • Emmanuel Ohene Afoakwa
  • Alistair Paterson
  • Mark Fowler
  • Joselio Vieira
Original Paper

Abstract

In dark chocolate, rheological properties during processing are influenced by particle size distribution (PSD), fat and lecithin contents with consequential effects on finished texture and melting characteristics. Multivariate regression, correlation and principal component analyses (PCA) were used to explore their interrelationships. A 4 × 3 × 2 factorial experiment was conducted with varying PSD [D 90 (90% finer than this size) of 18, 25, 35 and 50 μm], fat (25, 30 and 35%) and lecithin (0.3 and 0.5%). Rheological properties (yield stress and apparent viscosity), textural properties (firmness, index of viscosity and hardness) and melting index (duration) were respectively measured using shear rate-controlled rheometer, TA.HD Plus texture analyzer and differential scanning calorimetry. The PSD, fat and lecithin contents significantly influenced all rheological, textural properties and some melting characteristics. Increasing particles sizes reduced yield stress, apparent viscosity, firmness, index of viscosity, hardness and melting index of products with greatest influence with 25% fat and 0.3% lecithin, reduced with increasing fat and lecithin contents. There were high correlation (r = 0.78–0.99) and regression coefficients (R 2 = 0.59–0.99) among the rheological, textural and melting index indicating their high inter-relationships. In PCA, the rheological, textural and melting index accounted for >95% variance in the data.

Keywords

Chocolate Rheology Texture Melting properties Particle size distribution PCA 

Notes

Acknowledgments

This study was co-funded by the Government of Ghana and Nestlé Product Technology Centre (York, UK). The sponsors are gratefully acknowledged for the Research Support. The authors thank Steve Beckett, Angela Ryan and Angel Manez (Nestlé PTC, York) for expert technical assistance.

References

  1. 1.
    Afoakwa EO, Paterson A, Fowler M (2007) Trends Food Sci Technol 18:290–298. doi: 10.1016/j.tifs.2007.02.002 CrossRefGoogle Scholar
  2. 2.
    Servais C, Ranc H, Roberts ID (2004) J Texture Stud 34:467–497. doi: 10.1111/j.1745-4603.2003.tb01077.x CrossRefGoogle Scholar
  3. 3.
    Chevalley J (1999) In: Beckett ST (ed) Industrial chocolate manufacture and use. Chapman & Hall, New York, pp 182–199Google Scholar
  4. 4.
    International Confectionery Association (ICA) (2000) Viscosity of cocoa and chocolate products. Analytical method 46. Available from CAOBISCO, rue Defacqz 1, B-1000 Bruxelles, BelgiumGoogle Scholar
  5. 5.
    Doraiswamy D, Mujumdar AM, Tsao I, Beris A, Metzner AB (1991) J Rheol 35:647–685CrossRefGoogle Scholar
  6. 6.
    Yoo B, Rao MA (1995) J Texture Stud 26:1–10. doi: 10.1111/j.1745-4603.1995.tb00780.x CrossRefGoogle Scholar
  7. 7.
    Prasad V, Trappe V, Dinsmore AD, Segre PN, Cipelletti L, Weitz DA (2003) Rideal Lect Faraday Discuss 123:1–12CrossRefGoogle Scholar
  8. 8.
    Baker BS, Brown BD, Anantheswaran RC (2006) J Texture Stud 37:655–667. doi: 10.1111/j.1745-4603.2006.00076.x CrossRefGoogle Scholar
  9. 9.
    Seguine ES (1988) Manuf Confect 11:57–63Google Scholar
  10. 10.
    Beckett ST (2000) The science of chocolate. Royal Society of Chemistry Paperbacks, pp 12–52Google Scholar
  11. 11.
    Afoakwa EO, Paterson A, Fowler M (2007) Eur Food Res Technol (Published online). doi: 10.1007/s00217-007-0652-610.1007/s00217-007-0652-6
  12. 12.
    Bourne M (2002) Food texture and viscosity: concepts and measurements. Academic Press, San Diego, pp 102–134Google Scholar
  13. 13.
    Varela P, Salvador A, Fiszman S (2007) J Food Eng 78:622–629. doi: 10.1016/j.jfoodeng.2005.10.034 CrossRefGoogle Scholar
  14. 14.
    Heath RM, Prinz JF (1999) In: Rosenthal AJ (ed) Food texture: measurement and perception. Aspen, Gaithersburg, pp 18–29Google Scholar
  15. 15.
    Kilcast D (1999) In: Rosenthal AJ (ed) Food texture measurement and perception. Chapman & Hall, Aspen, USA, pp 30–64Google Scholar
  16. 16.
    Wilkinson C, Dijksterhuis GB, Minekus M (2000) Trends Food Sci Technol 11:442–450. doi: 10.1016/S0924-2244(01)00033-4 CrossRefGoogle Scholar
  17. 17.
    Lillford PJ (1991) In: Vincent JFV, Lillford PJ (eds) Feeding and the texture of foods. University Press, Cambridge, pp 231–243Google Scholar
  18. 18.
    Lawless HT, Heymann H (1998) Sensory evaluation of food; principles and practices. Chapman & Hall, New York, pp 24–35Google Scholar
  19. 19.
    Mohamed AAA, Jowitt R, Brennan JG (1982) J Food Eng 1:55–75. doi: 10.1016/0260-8774(82)90013-9 CrossRefGoogle Scholar
  20. 20.
    Meullenet J-F, Carpenter JA, Lyon BG, Lyon CE (1997) J Texture Stud 28:101–118. doi: 10.1111/j.1745-4603.1997.tb00104.x CrossRefGoogle Scholar
  21. 21.
    Rosenthal AJ (1999) In: Rosenthal AJ (ed) Food texture, measurement and perception. Chapman & Hall, Aspen, USA, pp 1–17Google Scholar
  22. 22.
    Ali A, Selamat J, CheMan YB, Suria AM (2001) Food Chem 72:491–497. doi: 10.1016/S0308-8146(00)00271-5 CrossRefGoogle Scholar
  23. 23.
    Pereira RB, Singh H, Munro PA, Luckman MS (2003) Int Dairy J 13:655–667. doi: 10.1016/S0958-6946(03)00071-2 CrossRefGoogle Scholar
  24. 24.
    Braipson-Danthine S, Deroanne C (2004) Food Res Intern 37:941–948. doi: 10.1016/j.foodres.2004.06.003 CrossRefGoogle Scholar
  25. 25.
    Christiansen KF, Krekling T, Kohler A, Vegarud G, Langsrud T, Egelandsdal B (2006) Food Hydrocolloids 20:650–662. doi: 10.1016/j.foodhyd.2005.06.004 CrossRefGoogle Scholar
  26. 26.
    Baixauli R, Sanz T, Salvador A, Fiszman SM (2007) Food Hydrocolloids 21:230–236. doi: 10.1016/j.foodhyd.2006.03.014 CrossRefGoogle Scholar
  27. 27.
    Tabouret T (1987) Int J Food Sci Technol 22:163–167. doi: 10.1111/j.1365-2621.1987.tb00472.x Google Scholar
  28. 28.
    Walter P, Cornillon P (2001) J Am Oil Chem Soc 78:927–932CrossRefGoogle Scholar
  29. 29.
    Walter P, Cornillon P (2002) Food Res Intern 35:761–767. doi: 10.1016/S0963-9969(02)00072-8 CrossRefGoogle Scholar
  30. 30.
    ICA (1998) Determination of moisture content of cocoa and chocolate products. Analytical Method 26. Available from CAOBISCO, rue Defacqz 1, B-1000 Bruxelles, BelgiumGoogle Scholar
  31. 31.
    ICA (1990) Determination of fat content of cocoa and chocolate products. Analytical Method 37. Available from CAOBISCO, rue Defacqz 1, B-1000 Bruxelles, BelgiumGoogle Scholar
  32. 32.
    Vasanthan T, Bhatty RS (1996) Cereal Chem 73:199–207Google Scholar
  33. 33.
    Ziegler G, Hogg R (1999) In: Beckett ST (ed) Industrial chocolate manufacture and use. Chapman & Hall, New York, pp 182–199Google Scholar
  34. 34.
    Full NA, Yella Reddy S, Dimick PS, Ziegler GR (1996) J Food Sci 61:1066–1084CrossRefGoogle Scholar
  35. 35.
    Liang B, Hartel W (2004) J Dairy Sci 87:30–1CrossRefGoogle Scholar
  36. 36.
    Mongia G, Ziegler GR (2000) Int J Food Prop 3:137–147Google Scholar
  37. 37.
    Beckett ST (1999) Industrial chocolate manufacture and use, 3rd edn. Blackwell Science, Oxford, pp 153–181, 201–230, 405–428, 460–465Google Scholar
  38. 38.
    Keogh K, Twomey M, O’Kennedy B, Mulvihill D (2002) Lait 82:531–539CrossRefGoogle Scholar
  39. 39.
    Ziegler GR, Mongia G, Hollender R (2001) Int J Food Prop 4:353–370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Emmanuel Ohene Afoakwa
    • 1
    • 2
  • Alistair Paterson
    • 1
  • Mark Fowler
    • 2
  • Joselio Vieira
    • 2
  1. 1.Centre for Food Quality, SIPBS Royal College BuildingUniversity of StrathclydeGlasgowUK
  2. 2.Nestle Product Technology Centre YorkYorkUK

Personalised recommendations