European Food Research and Technology

, Volume 227, Issue 4, pp 1091–1097

Bioactive components and antioxidant capacity of Chinese bayberry (Myrica rubra Sieb. and Zucc.) fruit in relation to fruit maturity and postharvest storage

  • WangShu Zhang
  • Xian Li
  • JinTu Zheng
  • GuoYun Wang
  • ChongDe Sun
  • Ian B. Ferguson
  • KunSong Chen
Original Paper


Total phenolics, flavonoids, anthocyanins, cyanidin-3-O-glucoside (Cy-3-glu) and antioxidant capacity of Chinese bayberry fruit (Myrica rubra Sieb. and Zucc.) differed among the four cultivars “Baizhong” (white), “Fenhong” (pink), “Wuzhong” (red) and “Biqi” (dark red). Antioxidant capacity determined by both the ferric reducing antioxidant power (FRAP) assay and 2,2-diphenyl-2-picrylhydrazyl (DPPH.) radical scavenging capacity was significantly correlated with the antioxidant components in the fruit, and directly related to fruit color. Cy-3-glu accounted for at least 82, 38, and 12% of the total antioxidant capacity in “Biqi”, “Wuzhong” and “Fenhong” fruits, respectively. No detectable Cy-3-glu was found in “Baizhong” fruit. Greater fruit maturity was associated with higher levels of all the bioactive components and antioxidant capacity. Significant increases were also found during postharvest storage of “Biqi” fruit held at either 20 °C for 2 days or 0 °C for 5 days. However, these levels decreased during a 2-day shelf-life at 20 °C after 5 days at 0 °C. These results show that storage and shelf-life conditions are important if health-based bioactive components of bayberry fruit are to be maintained after harvest.


Antioxidant capacity Anthocyanins Chinese bayberry Phenolics Fruit maturity Postharvest 


  1. 1.
    Temple NJ (2000) Nutr Res 20:449–459CrossRefGoogle Scholar
  2. 2.
    Willett WC (2002) Science 296:695–698CrossRefGoogle Scholar
  3. 3.
    Wang H, Cao G, Prior RL (1996) J Agric Food Chem 44:701–705CrossRefGoogle Scholar
  4. 4.
    Netzel M, Strass G, Kaul C, Bitsc I, Dietrich H, Bitsch R (2002) Food Res Intern 35:213–216CrossRefGoogle Scholar
  5. 5.
    Wang H, Cao GH, Prior RL (1997) J Agric Food Chem 45:304–309CrossRefGoogle Scholar
  6. 6.
    Cooke D, Steward WP, Gescher AJ, Marczylo T (2005) Eur J Cancer 41:1931–1940CrossRefGoogle Scholar
  7. 7.
    Mazza G, Miniati E (1993) Anthocyanins in fruits, vegetable and grains. CRC Press, Boca Raton, pp 105Google Scholar
  8. 8.
    Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE (2002) J Agric Food Chem 50:519–525CrossRefGoogle Scholar
  9. 9.
    Chen KS, Xu CJ, Zhang B, Ferguson IB (2004) Hortic Rev 30:83–114Google Scholar
  10. 10.
    Bao JS, Cai YZ, Wang GY, Corke H (2005) J Agric Food Chem 53:2327–2332CrossRefGoogle Scholar
  11. 11.
    Zhang WS, Chen KS, Zhang B, Sun CD, Cai C, Zhou CH, Xu WP, Zhang WQ, Ferguson IB (2005) Postharvest Biol Technol 37:241–251CrossRefGoogle Scholar
  12. 12.
    Carreño J, Martínez A, Almela L, Fernández-López JA (1995) Food Res Intern 28:373–377CrossRefGoogle Scholar
  13. 13.
    Cai YZ, Luo Q, Sun M, Corke H (2004) Life Sci 74:2157–2184CrossRefGoogle Scholar
  14. 14.
    Jia Z, Meng CT, Wu J (1999) Food Chem 64:555–559CrossRefGoogle Scholar
  15. 15.
    Wrolstand RE, Culbertsonm JD, Cornwell CJ, Mattick L (1982) J AOAC Int 6:1417–1423Google Scholar
  16. 16.
    Benzie IFF, Strain JJ (1996) Anal Biochem 293:70–76CrossRefGoogle Scholar
  17. 17.
    Deighton N, Brennan R, Finn C, Davies HV (2000) J Sci Food Agric 80:1307–1313CrossRefGoogle Scholar
  18. 18.
    Sakakibara H, Honda Y, Nakagawa S, Ashida H, Kanazawa K (2003) J Agric Food Chem 51:571–581CrossRefGoogle Scholar
  19. 19.
    Ozgen M, Reese RN, Tulio JR, AZ, Scheerens JC, Miller AR (2006) J Agric Food Chem 54:1151–1157CrossRefGoogle Scholar
  20. 20.
    Strack D, Wray V (1993) The anthocyanins. In: Harborne JB (ed) The flavonoids: advances in research since 1986. Chapman Hall, London, pp 1–22Google Scholar
  21. 21.
    Delgado-Andrade C, Rufiaǎ-Henares JA, Morales FJ (2005) J Agric Food Chem 53:7832–7836CrossRefGoogle Scholar
  22. 22.
    Sun J, Chu YF, Wu X, Liu RH (2002) J Agric Food Chem 50:7449–7454CrossRefGoogle Scholar
  23. 23.
    Connor AM, Luby JJ, Hancock JF, Berkheimer S, Hanson EJ (2002) J Agric Food Chem 50:893–898CrossRefGoogle Scholar
  24. 24.
    Wang SY, Stretch AW (2001) J Agric Food Chem 49:969–974CrossRefGoogle Scholar
  25. 25.
    Prior RL, Cao GH, Martin A, Sofic E, McEwen J, O’Brien C Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainland CM (1998) J Agric Food Chem 46:2686–2693CrossRefGoogle Scholar
  26. 26.
    Cordenunsi RB, Genovese MI, Nascimento JRO, Hassimotto NMA, Santos RJ, Lajolo FM (2005) Food Chem 91:113–121CrossRefGoogle Scholar
  27. 27.
    Kalt W, Lawand C, Ryan DAJ, McDonald JE, Donner H, Forney CF (2003) J Am Soc Hortic Sci 128:917–923Google Scholar
  28. 28.
    Kalt W, Forney CF, Martin A, Prior RL (1999) J Agric Food Chem 47:4638–4644CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • WangShu Zhang
    • 1
    • 2
  • Xian Li
    • 1
  • JinTu Zheng
    • 2
  • GuoYun Wang
    • 3
  • ChongDe Sun
    • 1
  • Ian B. Ferguson
    • 1
    • 4
  • KunSong Chen
    • 1
  1. 1.Laboratory of Fruit Molecular Physiology and BiotechnologyThe State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Biotechnology, Zhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Forestry Bureau of Ningbo CityNingboPeople’s Republic of China
  3. 3.Yuyao Agricultural and Forestry BureauYuyaoPeople’s Republic of China
  4. 4.The Horticulture and Food Research Institute of New ZealandAucklandNew Zealand

Personalised recommendations