Skip to main content
Log in

Differentiation of co-winemaking wines by their aroma composition

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Co-winemaked Monastrell wines with Cabernet Sauvignon or Merlot, at different proportions have been studied for first time in terms of its odor activity value (OAV) in young wines, aging wines (after 9 months in French oak barrels) and bottled aging wines (aging wines after 6 months in the bottle). The co-winemaking wines showed a different aromatic complexity as they were fruitier and sweeter than the monovarietal ones, enhancing their aroma characteristics, being more evident at 60:40 proportion in case of Merlot for young and aging wines and Cabernet Sauvignon for bottled ones. In terms of extractable oak compounds, Monastrell–Merlot wines showed the highest values suggesting that they may need a shorter period within the barrel than Monastrell–Cabernet Sauvignon ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mamede M, Cardello H, Pastore G (2005) Food Chem 89:63–68

    Article  CAS  Google Scholar 

  2. Ferreira V, Ortín N, Escudero A, López R, Cacho JF (2002) J Agric Food Chem 50:4048–4054

    Article  CAS  Google Scholar 

  3. Peinado RA, Moreno J, Bueno JE, Moreno JA, Mauricio JC (2004) Food Chem 84:585–590

    Article  CAS  Google Scholar 

  4. Culleré L, Escudero A, Cacho J, Ferreira V (2004) J Agric Food Chem 52(6):1653–1660

    Article  CAS  Google Scholar 

  5. Etiévant PX (1991) Wine. In: Maarse H (ed) Volatile compounds of food and beverages. Marcel Dekker, New York, pp 483–546

    Google Scholar 

  6. Schereier P (1979) CRC Crit Rev Food Sci Nutr 12:59–111

    Article  Google Scholar 

  7. Ramey D, Ough CS (1980) J Agric Food Chem 28:928–934

    Article  CAS  Google Scholar 

  8. Fleet GH, Heard GM (1993) Yeast growth during fermentation. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood, Switzerland, pp 27–57

    Google Scholar 

  9. Butzke CE (1998) Am J Enol Vitic 49(2):220–224

    CAS  Google Scholar 

  10. Marchetti R, Guerzoni ME (1987) Conn Vigne Vin 21:113–125

    CAS  Google Scholar 

  11. Chatonnet P, Boidron JN, Pons M (1990) Sci Alim 10:565–587

    CAS  Google Scholar 

  12. Díaz-Plaza EM, Reyero JR, Pardo F, Alonso GL, Salinas MR (2002) J Agric Food Chem 50(9):2622–2626

    Article  CAS  Google Scholar 

  13. Cadahía E, Fernández de Simón B, Jalocha J (2003) J Agric Food Chem 51(20):5923–5932

    Article  CAS  Google Scholar 

  14. Garde T, Ancín C (2006) LWT-Food Sci Technol 39:199–205

    Article  CAS  Google Scholar 

  15. Peynaud E (1984) Conservación y envejecimiento del vino. In: Mundi Prensa (ed) Enología práctica. Mundi Prensa, Madrid, Spain, pp 255–300

  16. Monagas M, Martín-Álvarez PJ, Gómez-Cordovés C, Bartolomé B (2007) LWT-Food Sci Technol 40:107–115

    Article  CAS  Google Scholar 

  17. Diago-Santamaría M, Boulton R (2003) In: 54th Annual Meeting of the American Society for Enology and Viticulture, Reno, NV

  18. Bayonove C, Baumes R, Crouzet J, Günata Z (2003) Aromas. In: Flanzy C (ed) Enolología: Fundamentos Científicos y Tecnológicos. Mundi Prensa, Madrid, Spain, pp 137–145

    Google Scholar 

  19. Dubordieu D, Ollivier CH, Boidron JN (1986) Conn Vigne Vin 20(1):53–76

    Google Scholar 

  20. Boulton RB (2001) Am J Enol Vitic 52(2):67–87

    CAS  Google Scholar 

  21. Lorenzo C, Pardo F, Zalacain A, Alonso GL, Salinas MR (2005) J Agric Food Chem 53:7609–7616

    Article  CAS  Google Scholar 

  22. Salinas MR, Zalacain A, Pardo F, Alonso GL (2004) J Agric Food Chem 52:4821–4827

    Article  CAS  Google Scholar 

  23. Reyero JR, Garijo J, Díaz-Plaza EM, Cuartero H, Pardo F, Salinas MR (2000) Aliment Equipos Tecnol 2:101–110

    Google Scholar 

  24. ECC (1990) Off J Eur Commun L 272(3):1–192

    Google Scholar 

  25. Huerta MD, Masoud T, Salinas MR (1995) Sci Alim 15:187–191

    Google Scholar 

  26. Guth H (1997) J Agric Food Chem 45:3027–3032

    Article  CAS  Google Scholar 

  27. Salinas MR, Alonso GL (1997) Adsorption-thermal desorption-gas chromatography applied to the determination of wine aromas. In: Lindskend HF, Jackson JF (eds) Moderns methods of plants analysis. Springer, Berlin, pp 175–192

    Google Scholar 

  28. Ferreira V, López R, Cacho JF (2000) J Sci Food Agric 80:1659–1667

    Article  CAS  Google Scholar 

  29. Leffingwell D, Leffingwell JC (1999) Esters. Detection thresholds and molecular structures. In: Leffingwell JC (ed) Odor detection thresholds of grass flavor chemicals. Leffinwell & Associates

  30. Chatonnet P (1991) Incidence du bois de chêne sur la composition chimique et les qualités organoleptiques des vins. Thesis, Université de Bordeaux

  31. Chatonnet P, Dubordieu D, Boidron JN (1992) Sci Alim 12:665–685

    CAS  Google Scholar 

  32. Aiken JV, Noble AC (1984) Vitis 23:27–36

    CAS  Google Scholar 

  33. Chatonnet P, Boidron JN, Dubordieu D (1993) J Inter Sci Vigne Vin 27:277–298

    CAS  Google Scholar 

  34. Stashenko H, Macku C, Shibamato T (1992) J Agric Food Chem 40:2257–2259

    Article  CAS  Google Scholar 

  35. Mallouchos A, Komaitis M, Koutinas A, Kanellaki M (2002) J Agric Food Chem 50:3840–3848

    Article  CAS  Google Scholar 

  36. Ribéreau-Gayon J, Peynaud E, Ribéreau-Gayon P, Sudraud P (1976) In: Dunoud (ed) Traité d’oenologie. Sciences et techniques du vin. Dunoud, Paris, France

  37. Versini G, Orriols I, Dalla Serra A (1994) Vitis 33:165–170

    CAS  Google Scholar 

  38. Dubois P (1994) Rev Fran d’œnol 145:27–39 and 146:39–50

  39. Piggott JR, Findlay AJ (1984) Detection thresholds for esters mixtures In: Nykänen L, Lehtonen P (eds) Flavour research of alcoholic beverages—instrumental and sensory analysis. Foundation for Biotechnological and Industrial Fermentation Research, Helsinki, pp 189–197

    Google Scholar 

  40. Jackson RS (1994) Wine science: principles and applications. Academia Press, San Diego

    Google Scholar 

  41. Marais J, Pool HJ (1980) Vitis 19:151–164

    Google Scholar 

  42. Salinas MR, Garijo J, Pardo F, Zalacain A, Alonso GL (2005) J Sci Food Agric 85:1527–1536

    Article  CAS  Google Scholar 

  43. Usseglio-Tomasset L (1998) In: Mundi-Prensa (ed). Química Enológica. Mundi Prensa, Madrid, Spain

  44. Franciolo S, Torrens J, Riu-Aumatell M, López-Tamames E, Buxaderas S (2003) Am J Enol Vitic 53:158–162

    Google Scholar 

  45. Ferreira V, Fernández P, Peña C, Escudero A, Cacho JF (1995) J Sci Food Agric 67:381–392

    Article  CAS  Google Scholar 

  46. Van der Merwe CA, Van Wick CJ (1981) Am J Enol Vitic 32:41–46

    Google Scholar 

  47. Davis CR, Wibowo D, Eschenbruch R, Lee TH, Flee GH (1985) Am J Enol Vitic 36:290–301

    CAS  Google Scholar 

  48. Shinohara T (1985) Agric Biol Chem 49:2211–2212

    CAS  Google Scholar 

  49. Jarauta I, Cacho J, Ferreira V (2005) J Agric Food Chem 53(10):4166–4177

    Article  CAS  Google Scholar 

  50. Baumes R, Bayonove C, Barillere JM, Escudier JL, Cordonnier R (1988) Conn Vigne Vin 22(3):209–223

    CAS  Google Scholar 

  51. Salinas MR, Garijo J, Pardo F, Zalacain A, Alonso GL (2003) Am J Enol Vitic 54(3):195–202

    CAS  Google Scholar 

  52. Garde T, Torrea D, Ancín C (2004) J Food Eng 65(3):349–356

    Article  Google Scholar 

  53. Straus CR, Gooley PR, Wilson B, Williams PJ (1987) J Agric Food Chem 35:519–524

    Article  Google Scholar 

  54. Chatonnet P, Dubordieu P, Boidron JN, Pons M (1992) J Sci Food Agric 60:165–178

    Article  CAS  Google Scholar 

  55. Chatonnet P (2004) La contaminación de los vinos por Brettanomyces durante la vinificación y la crianza: incidencia detección y medios de lucha. In: Encuentro enológico sobre anisoles y Brettanomyces. Causas efectos y mecanismos de control. Madrid, Spain, pp. 87–95

  56. Etiévant PX, Issanchou S, Marie S, Ducruet V, Flanzy C (1989) Sci Alim 9:19–33

    Google Scholar 

  57. Müller CJ, Kepner RE, Webb AD (1973) Am J Enol Vitic 24:5–9

    Google Scholar 

  58. Ancín C, Garde T, Torrea D, Jiménez N (2004) Food Res Int 37:375–383

    Article  CAS  Google Scholar 

  59. Díaz-Plaza EM, Reyero JR, Pardo F, Salinas MR (2002) Anal Chim Acta 458:139–145

    Article  Google Scholar 

  60. Waterhouse AL, Towey JP (1994) J Agric Food Chem 42:42–48

    Article  Google Scholar 

  61. Gómez-Míguez MJ, Gómez-Míguez M, Vicario I, Heredia F (2007) J Food Eng 79(3):758–764

    Article  CAS  Google Scholar 

  62. Hernández-Orte P, Cacho J, Ferreira V (2002) J Agric Food Chem 50(10):2891–2899

    Article  CAS  Google Scholar 

  63. Lambrechts MG, Pretorius IS (2000) S Afr J Vitic 21:97–129

    CAS  Google Scholar 

  64. Hernández-Orte P, Ibarz MJ, Cacho J, Ferreira V (2005) Food Chem 89(2):163–174

    Article  CAS  Google Scholar 

  65. Díaz C, Conde JE, Méndez JJ, Pérez J (2003) Food Chem 81(3):447–452

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financed by the Ministerio de Ciencia y Tecnología of Spain (Project VIN01-015-C2-1). Thanks to Antonio Alfaro for his technical assistance and Kathy Walsh for proofreading the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rosario Salinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenzo, C., Pardo, F., Zalacain, A. et al. Differentiation of co-winemaking wines by their aroma composition. Eur Food Res Technol 227, 777–787 (2008). https://doi.org/10.1007/s00217-007-0786-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0786-6

Keywords

Navigation