European Food Research and Technology

, Volume 227, Issue 3, pp 701–708 | Cite as

Element signature analysis: its validation as a tool for geographic authentication of the origin of dried beef and poultry meat

  • Bettina M. Franke
  • Max Haldimann
  • Gérard Gremaud
  • Jacques-Olivier Bosset
  • Ruedi Hadorn
  • Michael Kreuzer
Original Paper

Abstract

Element concentrations of 56 poultry meat and 53 dried beef samples were determined and statistically analyzed using analysis of variance and linear discriminant analysis (LDA) to identify the single or combination of elements with the highest potential to determine the geographic origin. In order to validate the applicability of this technique, the results were additionally combined with data from an earlier assessment including 25 poultry meat and 23 dried beef samples. Validation was performed by estimating the origin of the first samples based on the data of the second, larger, dataset. Elements significantly discriminating among countries were As, Na, Rb, Se, Sr, and Tl for poultry meat and As, B, Ba, Ca, Cd, Cu, Dy, Er, Fe, Li, Mn, Pd, Rb, Se, Sr, Te, Tl, U, and V for dried beef out of about 50 elements each. The LDA gave mean correct classification rates of 77 and 79% for poultry meat and dried beef, respectively. Validation allowed identifying some, but not all, origins. For a higher discriminative power, this method should be combined with other ways of authentication.

Keywords

Beef Broiler Meat Trace elements Authentication Traceability 

References

  1. 1.
    Anke M, Angelow L (1995) Fresenius J Anal Chem 352:236–239CrossRefGoogle Scholar
  2. 2.
    Hintze KJ, Lardy GP, Marchello MJ, Finley JW (2001) J Agric Food Chem 49:1062–1067CrossRefGoogle Scholar
  3. 3.
    Gremaud G, Karlen S, Hulliger K (2002) Mitt Lebensm Hyg 93:481–501Google Scholar
  4. 4.
    Bruce SL, Noller BN, Grigg AH, Mullen BF, Mulligan DR, Ritchie PJ, Currey N, Ng JC (2003) Toxicol Lett 137:23–34CrossRefGoogle Scholar
  5. 5.
    Franke BM, Gremaud G, Hadorn R, Kreuzer M (2005) Eur Food Res Technol 221:493–503CrossRefGoogle Scholar
  6. 6.
    Franke BM, Haldimann M, Reimann J, Baumer B, Gremaud G, Bosset JO, Hadorn R, Kreuzer M (2007) Eur Food Res Technol 225:501–509CrossRefGoogle Scholar
  7. 7.
    Anonymous (2001) Arsenic in drinking water, http://www.who.int/mediacentre/factsheets/fs210/en/index.html. Accessed on 13 July 2007
  8. 8.
    Anonymous (2005) Environmental Health Criteria 18: Arsenic, http://www.inchem.org/documents/ehc/ehc/ehc018.htm#SubSectionNumber:1.1.2. Accessed on 13 July 2007
  9. 9.
    WHO (2005) Arsenic Contamination in Ground Water Affecting Some Countries in the South-East Asia Region, http://www.searo.who.int/meeting/rc/rc54/54_8.htm. Accessed on 18 April 2007
  10. 10.
    Kim KW, Thornton I (1993) Environ Geochem Health 15:119–133CrossRefGoogle Scholar
  11. 11.
    Baldini M, Stacchini P, Cubadda F, Miniero R, Parodi P, Facelli P (2000) Food Addit Contam 17:679–687CrossRefGoogle Scholar
  12. 12.
    Jevsnik M, Doganoc DZ (2003) J Food Prot 66:686–690Google Scholar
  13. 13.
    Haldimann M, Dufossé K, Mompart A, Zimmerli B (1999) Mitt Lebensm Hyg 90:241–281Google Scholar
  14. 14.
    Ruz M, Codoceo J, Hurtado S, Munoz L, Gras N (1995) J Trace Elem Med Biol 9:156–159Google Scholar
  15. 15.
    Leiber F (2005) Causes and extent of variation in yield, nutritional quality and cheese-making properties of milk by high altitude grazing of dairy cows. Doctoral Thesis, No. 15735, ETH Zurich, Zurich, SwitzerlandGoogle Scholar
  16. 16.
    Tremel A, Masson P, Sterckeman T, Baize D, Mench M (1997) Environ Pollut 95:293–302CrossRefGoogle Scholar
  17. 17.
    Xiao T, Guha J, Boyle D (2004) Geochem 4:243–252Google Scholar
  18. 18.
    Eschnauer H, Gemmer-Colos V, Neeb R (1984) Z Lebensm Unters Forsch 178:453–460CrossRefGoogle Scholar
  19. 19.
    Bruce SL, Noller BN, Grigg AH, Mullen BF, Mulligan DR, Ritchie PJ, Currey N, Ng JC (2003) Toxicol Lett 137:23–34CrossRefGoogle Scholar
  20. 20.
    Horvat M, Nolde N, Fajon V, Jereb V, Logar M, Lojen S, Jacimovic R, Falnogy I, Liya Q, Faganeli J, Drobne D (2003) Sci Total Environ 304:231–256CrossRefGoogle Scholar
  21. 21.
    Chessa G, Calaresu G, Ledda G, Testa MC, Orrù A (2000) Lead, zinc and cadmium in biological tissues of sheep bred in a polluted area. In: Markert B, Friese K (eds) Trace elements—their distribution and effects in the environment. Elsevier, Amsterdam, pp 497–483Google Scholar
  22. 22.
    National Research Council (1994) Nutrient requirement of poultry. National Academy Press, Washington DCGoogle Scholar
  23. 23.
    Ausschuss für Bedarfsforschung der Gesellschaft für Ernährungsphysiologie (1999) Empfehlungen zur Energie- und Nährstoffversorgung von Legehennen und Masthühnern (Broiler). DLG, Frankfurt/MainGoogle Scholar
  24. 24.
    National Research Council (2000) Nutrient requirement of beef cattle. National Academy Press, Washington DCGoogle Scholar
  25. 25.
    Anonymous (2005) Mineralfutter für Rinder, http://www.gundel-gailroth.de/futtermittel/mineralfutter-rinder.htm. Accessed on 13 July 2007
  26. 26.
    Eurola M, Ekholm P, and Venäläinen E-J (2005) Selenium supplemented fertilization—effects on the selenium content of foods and the selenium intake in Finland, http://www.lbhi.is/landbunadur/wglbhi.nsf/Attachment/LBHI-rit-3/$file/LBHI-rit-3.pdf. Accessed on 13 July 2007
  27. 27.
    Hintze KJ, Lardy GP, Marchello MJ, Finley JW (2002) J Agric Food Chem 50:3938–3942CrossRefGoogle Scholar
  28. 28.
    Sager M (2005) Ernährung/Nutrition 29:199–206Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Bettina M. Franke
    • 1
  • Max Haldimann
    • 2
  • Gérard Gremaud
    • 2
  • Jacques-Olivier Bosset
    • 3
  • Ruedi Hadorn
    • 3
  • Michael Kreuzer
    • 1
  1. 1.Institute of Animal ScienceETH ZurichZurichSwitzerland
  2. 2.Swiss Federal Office of Public HealthBerne-LiebefeldSwitzerland
  3. 3.Agroscope Liebefeld-Posieux Research Station ALPBerne-LiebefeldSwitzerland

Personalised recommendations