Advertisement

European Food Research and Technology

, Volume 227, Issue 2, pp 599–606 | Cite as

Comparative study on color, viscosity and related enzymes of tomato juice treated by high-intensity pulsed electric fields or heat

  • Ingrid Aguiló-Aguayo
  • Robert Soliva-Fortuny
  • Olga Martín-Belloso
Original Paper

Abstract

The effects of high intensity pulsed electric fields (HIPEF) processing (35 kV/cm for 1,500 μs using bipolar 4-μs pulses at 100 Hz) on color parameters and viscosity, as well as peroxidase (POD), pectin methylesterase (PME) and polygalacturonase (PG), were evaluated during 77 days of storage at 4 °C and compared to thermal treatments at 90 °C for 1 min or 30 s for unprocessed tomato juice. HIPEF-treated tomato juice showed higher values of lightness than the thermally processed and the untreated juice throughout storage time (< 0.05). Viscosity of HIPEF-treated tomato juice was also greater than both thermally treated and untreated for the first 35 days of storage. POD of HIPEF-treated tomato juice was inactivated by 97% whereas in the case of the thermally treated, 90 and 79% inactivation was achieved after 1 min and 30 s, respectively. The highest PME inactivation in tomato juice was obtained by PEF (82%) and heat treatment at 90 °C for 1 min (96%). PG of PEF-treated tomato juice was inactivated by 12% whereas thermal treatments at 90 °C for 1 min or 30 s achieved 44 and 22%, respectively. Despite the low rates of PG inactivation obtained, the pattern followed in the residual activity along the storage time was similar in the tomato juice treated by HIPEF than the thermally processed.

Keywords

High-intensity pulsed electric fields Tomato juice Shelf life Enzymatic stability Physical parameters 

Notes

Acknowledgments

This work was supported by the Ministerio de Ciencia y Tecnología (Spain) through the Project ALI 2005-05768. This study has also been carried out with financial support from the Commission of the European Communities, Framework 6, Priority 5 ‘Food Quality and Safety’, Integrated Project NovelQ FP6-CT-2006-015710 that also financed a pre-doctoral grant for author Aguiló-Aguayo.

References

  1. 1.
    Braddock RJ (1999) Handbook of citrus by-products and processing technology. Wiley, New YorkGoogle Scholar
  2. 2.
    El-Beghiti K, Rabhi Z, Vorobiev E (2005) J Sci Food Agric 85:213–218CrossRefGoogle Scholar
  3. 3.
    Schilling S, Alber T, Toepfl S, Neidhart S, Knorr D, Schieber A, Carle R (2007) Innov Food Sci Emerg Technol 8:127–134CrossRefGoogle Scholar
  4. 4.
    Espachs-Barroso A, Barbosa-Cánovas G.V, Martín-Belloso O (2003) Food Rev Int 19:253–273CrossRefGoogle Scholar
  5. 5.
    Sobrino-López A, Martín-Belloso O (2006) J Food Prot 69:345–353Google Scholar
  6. 6.
    Cortés C, Esteve MJ, Frígola A, Torregrosa F (2005) Food Chem 91:319–325CrossRefGoogle Scholar
  7. 7.
    Gould WA (1992) Tomato production, processing and technology. CTI, BaltimoreGoogle Scholar
  8. 8.
    Marsellés-Fontanet AR, Martín-Belloso O (2007) J Food Eng 83:452–462CrossRefGoogle Scholar
  9. 9.
    Bruemmer JH, Roc B, Bowen ER (1976) J Food Sci 41:186–189CrossRefGoogle Scholar
  10. 10.
    BeMiller JN (1986) An introduction to pectins: structure and properties. In: Fishman ML, Jen JJ (eds) Chemistry and function of pectins. American Chemical Society, Washington, pp 1–12Google Scholar
  11. 11.
    Chou TD, Kokini JL (1987) J Food Sci 52:1658–1664CrossRefGoogle Scholar
  12. 12.
    Kimball DA (1991). Quality control and technology. Van Nostrand Reinhold, New YorkGoogle Scholar
  13. 13.
    Seacheol M, Jin ZT, Zhang QH (2003) J Agric Food Chem 51:3338–3344CrossRefGoogle Scholar
  14. 14.
    Elez-Martínez P, Soliva-Fortuny R, Martín-Belloso O (2006) Eur Food Res Technol 222:321–329CrossRefGoogle Scholar
  15. 15.
    Hunter RS (1975) The measurement of appearance. Wiley, New YorkGoogle Scholar
  16. 16.
    Marcus RT (1999) Colorymetry. In: Webster JG (ed) The measurement, instrumentation and sensors handbook. CRC Press, IEEE Press, chap 58Google Scholar
  17. 17.
    Elez-Martínez P, Aguiló-Aguayo I, Martín-Belloso O (2006) J Sci Food Agric 86:71–81CrossRefGoogle Scholar
  18. 18.
    Kimball DA (1991) Citrus processing. In: Kimbal DA (ed) Quality control and technology. Van Nostrand Reinhold, New York, pp 117–125Google Scholar
  19. 19.
    Gross KC (1982) Hortic Sci 17:933–934Google Scholar
  20. 20.
    Yeom HW, Streaker CB, Zhang QH, Min DB (2000) J Agric Food Chem 48:4597–4605CrossRefGoogle Scholar
  21. 21.
    Klim M, Nagy S (1988) J Agric Food Chem 36:1271–1274CrossRefGoogle Scholar
  22. 22.
    Goodman CL, Fawcett S, Barringer SA (2002) J Food Sci 67:404–408CrossRefGoogle Scholar
  23. 23.
    Cserhalmi Z, Sass-Kiss Á, Tóth-Markus M, Lechner N (2006) Innov Food Sci Emerg Technol 7:49–54CrossRefGoogle Scholar
  24. 24.
    Tiziani S, Vodovotz Y (2005) J Agric Food Chem 53: 7267–7273CrossRefGoogle Scholar
  25. 25.
    Irwe S, Olsson I (1994) Reduction of pectinesterase activity in orange juice by high-pressure treatment. In: Singh RP, Oliveira FAR (eds) Minimal processing of foods and process optimization. CRC, Ann Arbor, pp 35–42Google Scholar
  26. 26.
    Van Loey A, Verachtert B, Hendrickx M (2002) Trends Food Sci Technol 12:94–102CrossRefGoogle Scholar
  27. 27.
    Martín-Belloso O, Elez-Martínez P (2005) Enzymatic inactivation by pulsed electric fields. In: Sun D-W (ed) Emerging technologies for food processing. Elsevier, London, pp 155–181CrossRefGoogle Scholar
  28. 28.
    Nguyen P, Mittal GS (2007) Chem Eng Process 46:360–365CrossRefGoogle Scholar
  29. 29.
    Antohon GE, Sekine Y, Watanabe N, Barrett FM (2002) J Agric Food Chem 50:6153–6159CrossRefGoogle Scholar
  30. 30.
    Castro AJ, Swanson BG, Bárbosa-Cánovas GV, Zhang QH (2001) Pulsed electric fields denaturation of bovine alkaline phosphatase. In: Barbosa-Cánovas GV, Zhang QH (eds) Pulsed electric fields in food processing. Technomic Publishing, Lancaster, pp 65–82Google Scholar
  31. 31.
    Zhong K, Hu X, Zhao G, Chen F, Liao X (2005) Food Chem 92:473–479CrossRefGoogle Scholar
  32. 32.
    Porretta S (1996) Fruit Process 2:58–65Google Scholar
  33. 33.
    Fachin D, Van Loey AM, Nguyen BL, Verlent I, Indrawati, Hendrickx M (2002) Biotechnol Prog 18:739–744CrossRefGoogle Scholar
  34. 34.
    Espachs-Barroso A, Van Loey AM, Hendrickx M, Martín-Belloso O (2006) Innov Food Sci Emerg Technol 7:40–48CrossRefGoogle Scholar
  35. 35.
    Giner J, Gimeno V, Espachs A, Elez P, Barbosa-Cánovas GV, Martín O (2000) Innov Food Sci Emerg Technol 1:57–67CrossRefGoogle Scholar
  36. 36.
    Yeom HW, Sreaker CB, Zhang QH, Min DB (2002) J Food Sci 65:1359–1363CrossRefGoogle Scholar
  37. 37.
    Sentandreu E, Carbonell L, Rodrigo D, Carbonell JV (2006) J Food Prot 69:2016–2018Google Scholar
  38. 38.
    Vovk I, Simonovska B (2007) J Chromatogr 1144:90–96CrossRefGoogle Scholar
  39. 39.
    Rodrigo D, Cortés C, Clynen E, Schoofs L, Van Loey AM, Hendrickx M (2006) Food Res Int 39:440–448CrossRefGoogle Scholar
  40. 40.
    Giner J, Gimeno V, Palomes M, Barbosa-Cánovas GV, Martín O (2003) Eur Food Res Technol 217:43–48CrossRefGoogle Scholar
  41. 41.
    Fachin D, Van Loey AM , Nguyen BL, Verlent I, Indrawati, Hendrickx M (2003) Innov Food Sci Emerg Technol 4:135–142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ingrid Aguiló-Aguayo
    • 1
  • Robert Soliva-Fortuny
    • 1
  • Olga Martín-Belloso
    • 1
  1. 1.Department of Food TechnologyUTPV-CeRTA, University of LleidaLleidaSpain

Personalised recommendations