Advertisement

Modelling sweetness and texture perception in model emulsion systems

  • Tracey Hollowood
  • Sara Bayarri
  • Luca Marciani
  • Johanneke Busch
  • Susan Francis
  • Robin Spiller
  • Andrew Taylor
  • Joanne Hort
Original Paper

Abstract

Model emulsion samples, prepared subject to a d-optimal response surface design, were used to investigate the effect of rapeseed oil, sugar and hydroxypropyl methyl cellulose thickener (HPMC) on perceived sweetness, textural attributes (thickness, stickiness, mouth-coating, dispersing), instrumental measures of apparent viscosity 50 s−1 and Kokini oral shear stress. An increase in oil, sugar and HPMC resulted in an increase in perceived thickness, stickiness and mouth-coating, and a decrease in dispersion; sweetness was enhanced by the addition of both sugar and oil but suppressed by the addition of HPMC. Viscosity and Kokini oral shear stress were well correlated with oral thickness (r 2 > 0.9). Validated multiple linear regression models highlighted several 2-factor interactions between ingredients. Model statistics indicated that the variation in data was well explained; the models were predictive and could be used to navigate the design space. Samples predicted to be iso-thick and iso-sweet could not be discriminated (P > 0.10) in a 3-alternative forced choice (3-AFC) test using 35 panellists.

Keywords

Sweetness Texture Perception Multiple linear regression modelling Viscosity 

Notes

Acknowledgments

The authors would like to thank BBSRC and Unilever R&D, Vlaadingen, for their financial and technical support during this project.

References

  1. 1.
    Hoare J et al. (2004) The national diet and nutrition survey: adults aged 19 to 64 years; summary report, vol 5, HMSO, LondonGoogle Scholar
  2. 2.
    Drewnowski A (1997) J Am Diet Assoc 97(7):S58–S62CrossRefGoogle Scholar
  3. 3.
    Tuorila H (1992) In: Mela DJ (ed). Elsevier, London, pp 43–57Google Scholar
  4. 4.
    Mela DJ (1992) In: Mela DJ (ed). Elsevier, London, pp 43–57Google Scholar
  5. 5.
    Akhtar M, Murray BS, Dickinson E (2006) Food Hydrocolloids 20(6):839–847CrossRefGoogle Scholar
  6. 6.
    Bayarri S et al. (2007) Eur Food Res Technol. doi 10.1007/s00217–006-0521-8Google Scholar
  7. 7.
    Pangborn RM, Szczesniak AS (1974) J Texture Stud 4:467–482CrossRefGoogle Scholar
  8. 8.
    Christensen CM (1980) Percept Psychophys 28(4):315–320Google Scholar
  9. 9.
    Baines ZV, Morris ER (1987) Food Hydrocolloids 1:197–205Google Scholar
  10. 10.
    Malkki Y, Heinio RL, Autio K (1993) Food Hydrocolloids 6(6):525–532CrossRefGoogle Scholar
  11. 11.
    Hollowood TA, Linforth RST, Taylor AJ (2002) Chem Senses 27:583–591CrossRefGoogle Scholar
  12. 12.
    Cook DJ et al. (2003) In: Hofmann T, Ho CT, Pickenhagen W (eds). American Chemical Society, Washington DC, pp 240–253Google Scholar
  13. 13.
    Szczesniak AS (1987) J Texture Stud 18:1–15CrossRefGoogle Scholar
  14. 14.
    Xiong R et al. (2002) J Food Sci 67(2):877–883CrossRefGoogle Scholar
  15. 15.
    van Vliet T (2002) Food Qual Preference 13(4):227–236Google Scholar
  16. 16.
    Wood FW (1968) Rheology and texture of foodstuffs SCI. Monograph, LondonGoogle Scholar
  17. 17.
    Elejalde CC, Kokini JL (1992) J Texture Stud 23(3):315–336CrossRefGoogle Scholar
  18. 18.
    Richardson RK et al. (1989) Food Hydrocolloids 3:175–191CrossRefGoogle Scholar
  19. 19.
    Kokini JL (1987) J Food Eng 6:51–81CrossRefGoogle Scholar
  20. 20.
    Cook DJ et al. (2003) Chem Senses 28:11–23CrossRefGoogle Scholar
  21. 21.
    Daget N, Joerg M, Bourne M (2002) J Agric Food Chem 50:4232–4239CrossRefGoogle Scholar
  22. 22.
    Araujo I, Rolls E (2004) J Neurosci 24:3086–3093CrossRefGoogle Scholar
  23. 23.
    Stone H (1992) In: Hootman RC (ed). ASTM, Philadelphia, pp 15–21Google Scholar
  24. 24.
    Meilgaard, Civille, Carr (1991) Sensory Evaluation Techniques. CRC, New YorkGoogle Scholar
  25. 25.
    BSI (2004) Sensory analysis: Methodology: Triangle test BS ISO 4120. British Standards InstituteGoogle Scholar
  26. 26.
    de Wijk RA, Prinz JF (2005) Food Qual Prefer 16:121–129CrossRefGoogle Scholar
  27. 27.
    Prinz JF, de Wijk RA, Weenen H (2006) In: Weenen H, Shahidi F (eds). American Chemical Society, Washington DC, pp 95–104Google Scholar
  28. 28.
    Drewnowski A et al. (1989) Physiol Behav 45:177–183CrossRefGoogle Scholar
  29. 29.
    Drewnowski A et al. (1987) Am J Clin Nutr 46:442–450Google Scholar
  30. 30.
    Pereira RB, Bennet RJ, Luckman MS (2005) Instrumental and sensory evaluation of textural attributes in cheese analogs: a correlation study. J Sens Stud 20:434–453CrossRefGoogle Scholar
  31. 31.
    Morris ER (1994) In: Nishinari K, Doi E (eds). Plenum, New York, pp 201–208Google Scholar
  32. 32.
    Ferry A (2005) Relationship between rheology, mouthfeel and flavour perception in starch pastes. University of NottinghamGoogle Scholar
  33. 33.
    Ferry A-L et al. (2006) Food Hydrocolloids 20(6):855–862CrossRefGoogle Scholar
  34. 34.
    Frank RA, van der Klaauw NJ (1993) Percept Psychophys 54(3):343–354Google Scholar
  35. 35.
    Tuorila H et al. (1993) Int J Food Sci Technol 28(4):359–369Google Scholar
  36. 36.
    King SC, Lawler PJ, Adams JK (2000) J Food Sci 65(6):1056–1059CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Tracey Hollowood
    • 1
  • Sara Bayarri
    • 1
  • Luca Marciani
    • 2
  • Johanneke Busch
    • 3
  • Susan Francis
    • 4
  • Robin Spiller
    • 2
  • Andrew Taylor
    • 1
  • Joanne Hort
    • 1
  1. 1.Sensory Science Centre, Division of Food Sciences, School of BiosciencesUniversity of NottinghamLoughboroughUK
  2. 2.Wolfson Digestive Diseases Centre, Nottingham University HospitalUniversity of NottinghamNottinghamUK
  3. 3.Unilever Food and Health Research InstituteVlaardingenThe Netherlands
  4. 4.Sir Peter Mansfield Magnetic Resonance CentreUniversity of NottinghamNottinghamUK

Personalised recommendations