Advertisement

European Food Research and Technology

, Volume 227, Issue 1, pp 293–305 | Cite as

Selection of elderberry (Sambucus nigra L.) genotypes best suited for the preparation of elderflower extracts rich in flavonoids and phenolic acids

  • Lars P. ChristensenEmail author
  • Karl Kaack
  • Xavier C. Fretté
Original Paper

Abstract

The importance of raw material and extraction parameters for obtaining a high content of flavonoids and phenolic acids in elderflower extracts was investigated. Nine phenolic acids (3-O-, 4-O-, and 5-O-caffeoylquinic acid, 3-O- and 5-O-p-coumaroylquinic acid, 1,5-di-O-, 3,4-di-O-, 3,5-di-O- and 4,5-di-O-caffeoylquinic acid) and six flavonol glycosides (quercetin-3-O-rutinoside, quercetin-3-O-glucoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucoside, and quercetin-3-O-6″-acetylglucoside) were identified and quantified in elderflowers and/or extracts thereof by liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography-diode array detection (HPLC-DAD), respectively. The yield of elderflower extracts depended significantly on processing conditions and raw material properties and the maximum yield of elderflower extract was obtained by extraction for a maximum of 10 days at 4 °C using an extraction liquid consisting of a maximum of 20 w/w % sugars and 5% citric acid. The effects of the extraction liquid composition and raw material on the concentration of phenolic acids and flavonol glycosides in elderflower extracts were determined by factor analysis. Several elderberry genotypes were found to be useful for processing of elderflower extracts with a relative high concentration of phenolic acids and flavonol glycosides.

Keywords

Sambucus nigra L. Elderflower Genotypes Flavonol glycosides Phenolic acids Extracts Factor analysis 

Notes

Acknowledgments

The authors wish to thank Mr. Kim G. Vitten and Mrs. Lone Borum for their excellent technical assistance and the industrial companies Bottle Green Drinks Company, Thorncroft Vineyard Ltd., Steirische Beerenobst-genossenschaft, Beerenfrost Kuelhaus GmbH, Fyns Bærdyrkerforening, Rynkeby Foods and Dansk Erhvervsfrugtavl for their financial and technical support. We also thank EU (project no. FAIR CT98 9653, Elderopt) and the Danish Ministry of Food, Agriculture and Fisheries (J. nr. 93s-2466-Å01-01432) for their financial support.

References

  1. 1.
    Toulemonde B, Richard HMJ (1983) J Agric Food Chem 31:365–370CrossRefGoogle Scholar
  2. 2.
    Gottfried R (1993) Food Mark Technol 7:9–10Google Scholar
  3. 3.
    Jørgensen U, Hansen M, Christensen LP, Jensen K, Kaack K (2000) J Agric Food Chem 48:2376–2383CrossRefGoogle Scholar
  4. 4.
    Viberg U, Sjöholm I (1997) Livsmedelsteknik 6–7:32–33Google Scholar
  5. 5.
    Kaack K, Christensen LP, Hughes M, Eder R (2006) Eur Food Res Technol 223:57–70CrossRefGoogle Scholar
  6. 6.
    Davidek J (1961) Nature 189:487–488CrossRefGoogle Scholar
  7. 7.
    Lamaison JL, Petitjean-Freytet C, Carnat A (1991) Ann Pharm Fr 49:258–262Google Scholar
  8. 8.
    Petitjean-Freytet C, Carnat A, Lamaison JL (1991) J Pharm Belg 46:241–246Google Scholar
  9. 9.
    Hawryl MA, Hawryl A, Soczewinski E (2002) J Planar Chromatogr Modern TLC 15:4–10CrossRefGoogle Scholar
  10. 10.
    Urbanek M, Pospisillova M, Polasek M (2002) Electrophoresis 23:1045–1052CrossRefGoogle Scholar
  11. 11.
    Dawidowicz AL, Wianowska D, Baraniak B (2003) LWT Food Sci Technol 39:308–315CrossRefGoogle Scholar
  12. 12.
    Dawidowicz AL, Wianowska D, Gawdzik J, Smolarz DH (2003) J Liq Chromatogr Relat Technol 26:2381–2397CrossRefGoogle Scholar
  13. 13.
    Wach A, Pyrzyńska K, Biesaga M (2007) Food Chem 100:699–704CrossRefGoogle Scholar
  14. 14.
    Lopez-Lazaro M (2002) Curr Med Chem Anti-Cancer Agents 2:691–714CrossRefGoogle Scholar
  15. 15.
    Yang CS, Landau JM, Huang M-T, Newmark HL (2001) Annu Rev Nutr 21:381–406CrossRefGoogle Scholar
  16. 16.
    Moon YJ, Wang X, Morris ME (2006) Toxicol In Vitro 20:187–210CrossRefGoogle Scholar
  17. 17.
    Galati G, O´Brien PJ (2004) Free Radical Biol Med 37:287–303CrossRefGoogle Scholar
  18. 18.
    Morton LW, Caccetta RA-A, Puddey IB, Croft KD (2000) Clin Exp Pharmacol Physiol 27:152–159CrossRefGoogle Scholar
  19. 19.
    Steinberg FM, Bearden MM, Keen CL (2003) J Am Diet Assoc 103:215–223CrossRefGoogle Scholar
  20. 20.
    Schroeter H, Boyd C, Spencer JPE, Williams RJ, Cadenas E, Rice-Evans C (2002) Neurobiol Aging 23:861–880CrossRefGoogle Scholar
  21. 21.
    Youdim KA, Spencer JPE, Schroeter H, Rice-Evans C (2002) Biol Chem 383:503–519CrossRefGoogle Scholar
  22. 22.
    Spencer JPE, Mohsen MMAE, Rice-Evans C (2004) Arch Biochem Biophys 423:148–161CrossRefGoogle Scholar
  23. 23.
    Erlund I (2004) Nutr Res 24:851–874CrossRefGoogle Scholar
  24. 24.
    Williams RJ, Spencer JPE, Rice-Evans C (2004) Free Radical Biol Med 36:838–849CrossRefGoogle Scholar
  25. 25.
    Olthof MR, Hollman PCH, Katan MB (2001) J Nutr 131:66–71Google Scholar
  26. 26.
    Netzel M, Strass G, Kaul C, Bitsch I, Dietrich H, Bitsch R (2002) Food Res Intern 35:213–216CrossRefGoogle Scholar
  27. 27.
    Murkovic M, Abuja PM, Bergmann AR, Zirngast A, Adam U, Winklhofer-Roob BM, Toplak H (2004) Eur J Clin Nutr 58:244–249CrossRefGoogle Scholar
  28. 28.
    Laranjinha JAN, Almeida LM, Madeira VMC (1994) Biochem Pharmacol 48:487–494CrossRefGoogle Scholar
  29. 29.
    Nardini M, D’Aquino M, Tomassi G, Gentili V, Di Felice M, Scaccini C (1995) Free Radical Biol Med 19:541–552CrossRefGoogle Scholar
  30. 30.
    Middleton E, Kandaswami C (1992) Biochem Pharmacol 43:1167–1179CrossRefGoogle Scholar
  31. 31.
    Barak V, Halperin T, Kalickman I (2001) Eur Cytokine Netw 12: 290–296Google Scholar
  32. 32.
    Serkedjieva J (1996) Fitoterapia 67:351–358Google Scholar
  33. 33.
    Zakay-Rones Z, Thom E, Wollan T, Wadstein J (2004) J Int Med Res 32:132–140Google Scholar
  34. 34.
    Hernández NE, Tereschuk ML, Abdala LR (2000) J Ethnopharmacol 73:317–322CrossRefGoogle Scholar
  35. 35.
    Liu W, Wu CF, Yu QH, Guo YY (1991) Fitoterapia 62:83–85Google Scholar
  36. 36.
    Barak V, Birkenfeld S, Halperin T, Kalickman I (2002) Isr Med Assoc J 4:919–922Google Scholar
  37. 37.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Chem Biol Interact 160:1–40CrossRefGoogle Scholar
  38. 38.
    Überla K (1971) Faktorenanalyse. Springer, HeidelbergGoogle Scholar
  39. 39.
    Sharma S (1996) Applied multivariate techniques. Wiley, New York pp 99–143Google Scholar
  40. 40.
    Chang Q, Wong Y-S (2004) J Agric Food Chem 52:6694–6699CrossRefGoogle Scholar
  41. 41.
    Seitz U, Bonn G, Oefner P, Popp M (1991) J Chromatogr 559:499–504CrossRefGoogle Scholar
  42. 42.
    Pietta P, Bruno A, Mauri P, Rava A (1992) J Chromatogr 593:165–170CrossRefGoogle Scholar
  43. 43.
    Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) J Agric Food Chem 51:2900–2911CrossRefGoogle Scholar
  44. 44.
    Clifford MN, Knight S, Kuhnert N (2005) J Agric Food Chem 53:3821–3832CrossRefGoogle Scholar
  45. 45.
    Kammerer D, Carle R, Schieber A (2004) Rapid Commun Mass Spectrom 18:1331–1340CrossRefGoogle Scholar
  46. 46.
    Seitz U, Oefner PJ, Nathakarnkitkool S, Popp M, Bonn GK (1992) Electrophoresis 13:35–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Lars P. Christensen
    • 1
    Email author
  • Karl Kaack
    • 1
  • Xavier C. Fretté
    • 1
  1. 1.Department of Food Science, Faculty of Agricultural Sciences, Research Centre AarslevUniversity of AarhusAarslevDenmark

Personalised recommendations