European Food Research and Technology

, Volume 227, Issue 1, pp 167–174 | Cite as

Preparation of salidroside nano-liposomes by ethanol injection method and in vitro release study

  • Minghui Fan
  • Shiying Xu
  • Shuqin Xia
  • Xiaoming Zhang
Original Paper

Abstract

The purpose of this work was to prepare salidroside nano-liposomes by the ethanol injection method. To obtain the higher encapsulating efficiency of salidroside nano-liposomes, several factors including salidroside-loading capacity, cholesterol, Tween 80, ion strength and lipid concentration were investigated. The higher encapsulating efficiency of salidroside, 45%, was obtained with cholesterol to lipid mass ratio of 1:4, Tween 80 and lipid to the molar ratio of 1:2, and ion strength in a range 20–50 mmol/L. With the optimization operation, the particles of nano-liposomes were below 100 nm and zeta potential was in the range of −10 and −20 mV. The release study of salidroside in vitro from nano-liposomes exhibited a prolonged release profile as studied over a period of 24 h.

Keywords

Nano-liposome Salidroside Encapsulating efficiency Ethanol injection method In vitro release 

Notes

Acknowledgment

We thank Dr Xu, D and Dr Fu, S. H. of School of Textile and Clothing, Southern Yangtze University, for supplying the Nano-Mastersizer2000 equipments.

References

  1. 1.
    Kelly GS (2001) Rhodiola rosea: a possible plant adaptogen. Altern Med Rev 6:293–302Google Scholar
  2. 2.
    Xu JF, Su ZG, Feng PS (1998) Activity of tyrosol glucosyltransferase and improved salidroside production through biotransformation of tyrosol in Rhodiola sachalinensis cell cultures. J Biotechnol 61:69–73CrossRefGoogle Scholar
  3. 3.
    Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252CrossRefGoogle Scholar
  4. 4.
    Cevce G (1993) Lipid properties as a basis for membrane modeling and rational liposome design. In: Gregoriadis G (ed) Liposome technology, 2nd edn. CRC, Boca Raton, pp 1–36Google Scholar
  5. 5.
    Kamps JAAM, Scherphof GL (2003) Liposomes in biological systems. In: Torchilin V, Weissing V (eds) Liposomes: a practical approach, 2nd edn. Oxford University Press, Oxford, pp 267–286Google Scholar
  6. 6.
    Lasch J, Weissig V, Brandl M (2003) Preparation of liposomes. In: Torchilin V, Weissing V (eds) Liposomes: a practical approach, 2nd edn. Oxford University Press, Oxford, pp 3–16Google Scholar
  7. 7.
    Pons M, Foradada M, Estelrich J (1993) Liposomes obtained by the ethanol injection method. Int J Pharm 95:51–56CrossRefGoogle Scholar
  8. 8.
    Skalko N, Brandl M, Becirevic-Lacan M, Filipovic-Grcic J, Jalsenjak I (1996) Liposomes with nifedipine and nifedipine–cyclodextrin complex: calorimetrical and plasma stability comparison. Eur J Pharm Sci 4:359–366CrossRefGoogle Scholar
  9. 9.
    Lasic DD (1993) Injection methods. In: Lasic DD (ed) Liposomes: from physics to applications. Elsevier Science Publishers, Amsterdam, New York, pp 88–90Google Scholar
  10. 10.
    Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  11. 11.
    Zhao WQ, Yin YG, Liang Q (2004) Controlled release of salidroside from chitosan-alginate microcapsules. Food Ferment Ind (in Chinese) 30:66–69Google Scholar
  12. 12.
    Collado-Fernandez M, Gonzalez-Sanjose MJ, Pino-Navarro R (2000) Evaluation of turbidity: correlation between Kerstez turbimeter and nephelometric turbidimeter. Food Chem 71:563–566CrossRefGoogle Scholar
  13. 13.
    Xia SQ, Xu SY (2005) Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Res Int 38:289–296CrossRefGoogle Scholar
  14. 14.
    Hu CJ, Rhodes DG (1999) Proniosomes: a novel drug carrier preparation. Int J Pharm 185:23–35CrossRefGoogle Scholar
  15. 15.
    Hao YM, Zhao FL, Li N, Yang YH, Li K (2002) Studies on a high encapsulation of colchicine by a niosome system. Int J Pharm 244:73–80CrossRefGoogle Scholar
  16. 16.
    Brisaert M, Gabriels M, Matthijs V, Plaizier-Vercammen J (2001) Liposomes with tretinoin: a physical and chemical evaluation. J Pharm Biomed Anal 26:909–917CrossRefGoogle Scholar
  17. 17.
    Galovic Rengel R, Barisic K, Pavelic Z, Zanic Grubisic T, Cepelak I, Filipovic-Grcic J (2002) High efficiency entrapment of superoxide dismutase into mucoadhesive chitosan-coated liposomes. Eur J Pharm Sci 15:441–448CrossRefGoogle Scholar
  18. 18.
    De Bock K, Eijnde BO, Ramaekers M, Hespel P (2004) Acute Rhodiola rosea intake can improve endurance exercise performance. Int J Sport Nutr Exerc Metab 14:298–307Google Scholar
  19. 19.
    Qian J, Zhang H, Yang G, Wang B, Wen X (1993) Protective effects of Rhodiola crenulata on rats under antiorthostatic position and professional athletes. Space Med Med Eng 6:6–11Google Scholar
  20. 20.
    Imura T, Otake K, Hashimoto S, Gotoh T, Yuasa M, Yokoyama S, Sakai H, Rathman JF, Abe M (2002) Preparation and physicochemical properties of various soybean lecithin liposomes using supercritical reverse phase evaporation method. Coll and Surf B 27:133–140CrossRefGoogle Scholar
  21. 21.
    Gu YL (2003) Studies of Rhodiola extracting method and its preparations. Master Thesis, Shenyang Pharmaceutical UniversityGoogle Scholar
  22. 22.
    Patel VB, Misra AN (1999) Encapsulation and stability of clofazimine liposomes. J Microencapsul 16:357–367CrossRefGoogle Scholar
  23. 23.
    Lasic DD (1996) Stealth liposomes. In: Benita S (ed) Microencapsulation: methods and industrial application. Marcel Dekker, New York, pp 299–305Google Scholar
  24. 24.
    Agarwal R, Katare OP, Vyas SP (2001) Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int J Pharm 228:43–52CrossRefGoogle Scholar
  25. 25.
    Redziniak G, Perrier P (1996) Cosmetic application of liposomes. In: Benita S (ed) Microencapsulation: methods and industrial application. Marcel Dekker, New York, pp 577–580Google Scholar
  26. 26.
    Plessis J, Ramchandran C, Weiner N, Muller DG (1996) The influence of lipid composition and lamellarity of liposomes on the physical stability of liposomes upon storage. Int J Pharm 127:273–278CrossRefGoogle Scholar
  27. 27.
    Takeuchi H, Kojima H, Yamamoto H, Kawashima Y (2000) Polymer coating of liposomes with a modified polyvinyl alcohol and their systemic circulation and RES uptake in rats. J Control Release 68:195–205CrossRefGoogle Scholar
  28. 28.
    Carrion C, Domingo JC, Madariaga MA (2001) Preparation of long-circulating immuno-liposomes using PEG–cholesterol conjugates: effect of the spacer arm between PEG and cholesterol on liposomal characteristics. Chem Phys Lipids 113:97–110CrossRefGoogle Scholar
  29. 29.
    Tasi LM, Liu DZ, Chen WY (2003) Microcalorimetric investigation of the interaction of polysorbate surfactants with unilamellar phosphatidylcholines liposomes. Coll Surf A 213:7–14CrossRefGoogle Scholar
  30. 30.
    Alino SF, Iruarrizaga A, Alfaro J, Pajean M, Herbage D (1991) Stabilization of liposomes with collagen. Int J Pharm 77:33–40Google Scholar
  31. 31.
    Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2003) Physico-chemical stability of colloidal lipid particles. Biomaterials 24:4283–4300CrossRefGoogle Scholar
  32. 32.
    Schwarz C, Mehnert W, Lucks JS, Müller RH (1994) Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release 30:83–96CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Minghui Fan
    • 1
  • Shiying Xu
    • 1
  • Shuqin Xia
    • 1
  • Xiaoming Zhang
    • 1
  1. 1.State Key Laboratory of Food Science and TechnologySouthern Yangtze UniversityWuxiPeople’s Republic of China

Personalised recommendations