European Food Research and Technology

, Volume 226, Issue 6, pp 1545–1552 | Cite as

Effect of sun-drying on microstructure and texture of S. Bartolomeu pears (Pyrus communis L.)

  • Dulcineia Ferreira
  • José A. Lopes da Silva
  • Glória Pinto
  • Conceição Santos
  • Ivonne Delgadillo
  • Manuel A. CoimbraEmail author
Original Paper


Histological and mechanical studies were conducted to evaluate the changes that are conferred by a traditional sun-drying process on the texture and microstructure of a Portuguese pear cultivar (Pyrus communis L. var. S. Bartolomeu). Sun-drying processing of the pears results in loss of water, cell flattening and shrinkage, loss of cellular adhesion, and even loss of cell wall integrity. The sun-drying process significantly reduced the hardness and fracturability of the pear tissues, while increasing their cohesiveness, springiness and adhesiveness. The results obtained by texture and microstructure analysis of the fresh pear flesh reflect essentially an unified matrix comprising well-packed cells strongly bonded together whereas those of the sun-dried pear flesh pointed out a soft solid with many individual cells distributed in a soft matrix, explaining its softer and chewy texture.


Pears Sun-drying Microstructure Scanning electron microscopy Texture profile analysis 


  1. 1.
    Esper A, Muhlbauer W (1998) Renewable Energy 15:95–100CrossRefGoogle Scholar
  2. 2.
    Ratti C, Mujumdar AS (2005) Drying of fruits. In: Barrett DM, Somogyi L, Ramaswamy H (eds) Processing fruits: science and technology, 4th edn. CRC Press, Boca Raton, pp 185–220Google Scholar
  3. 3.
    Barroca MJ, Guine RPF, Pinto A, Goncalves FM, Ferreira DMS (2006) Food Bioprod Process 84:109–113CrossRefGoogle Scholar
  4. 4.
    Brett CT, Waldron KW (1996) Physiology and biochemistry of plant cell walls, 2nd ed. Chapman & Hall, CambridgeGoogle Scholar
  5. 5.
    Hills BP, Remigereau B (1997) Int J Food Sci Techn 32:51–61CrossRefGoogle Scholar
  6. 6.
    Aguilera JM, Stanley DW (1999) Microstructural principles of food processing and engineering. Aspen Publishers, GaithersburgGoogle Scholar
  7. 7.
    Waldron KW, Smith AC, Parr AJ, Ng A, Parker ML (1997) Trends Food Sci Technol 8:213–221CrossRefGoogle Scholar
  8. 8.
    Lopes da Silva JA, Rao MA (1999) Role of rheological behavior in sensory assessment of fluid foods. In: Rao MA (ed) Rheology of fluid and semisolid foods. Aspen Publishers, Gaithersburg, pp 369–384Google Scholar
  9. 9.
    Coimbra MA, Waldron KW, Delgadillo I, Selvendran RR (1996) J Agric Food Chem 44:2394–2401CrossRefGoogle Scholar
  10. 10.
    Redgwell RJ, MacRae E, Hallet I, Fischer M, Perry J, Harker R (1997) Planta 203:162–173CrossRefGoogle Scholar
  11. 11.
    Stolle-Smits T, Beekhuizen JG, Recourt K, Voragen AGJ, Dijk CD (1997) J Agric Food Chem 45:4790–4799CrossRefGoogle Scholar
  12. 12.
    Marsilio V, Lanza B, Campestre C, De Angelis M (2000) J Sci Food Agric 80:1271–1276CrossRefGoogle Scholar
  13. 13.
    Mafra I, Lanza B, Marsilio V, Campestre C, De Angelis M, Coimbra MA (2001) Physiol Plant 111:439–447CrossRefGoogle Scholar
  14. 14.
    Mafra I, Barros AS, Coimbra MA (2006) Carbohydr Polym 65:1–8CrossRefGoogle Scholar
  15. 15.
    Ferreira D, Barros A, Coimbra MA, Delgadillo I (2001) Carbohydr Polym 45:175–182CrossRefGoogle Scholar
  16. 16.
    Femenia A, Sánchez ES, Simal S, Rosselló C (1998) J Agric Food Chem 46:271–276CrossRefGoogle Scholar
  17. 17.
    Asgar MA, Yamauchi R, Kato K (2004) Food Chem 87:247–251CrossRefGoogle Scholar
  18. 18.
    Ferreira D, Guyot S, Marnet N, Delgadillo I, Renard CMGC, Coimbra MA (2002) J Agric Food Chem 50:4537–4544CrossRefGoogle Scholar
  19. 19.
    Khan AA, Vincent JFV (1990) J Sci Food Agric 52:455–466CrossRefGoogle Scholar
  20. 20.
    Ramana SV, Stengel E, Wolf W, Spiess WEL (1997) J Sci Food Agric 74:340–346CrossRefGoogle Scholar
  21. 21.
    Alvarez MD, Saunders DEJ, Vincent JFV (2000) Eur Food Res Technol 210:331–339CrossRefGoogle Scholar
  22. 22.
    Pinto G, Valentim H, Costa A, Castro S, Santos C (2002) In Vitro Cell Dev Biol-Plant 38:569–572CrossRefGoogle Scholar
  23. 23.
    Szczesniak AS (1963) J Food Sci 28:410–420CrossRefGoogle Scholar
  24. 24.
    Bourne MC (1978) Food Technol 32:62–66,72Google Scholar
  25. 25.
    Martin-Cabrejas MA, Waldron KW, Selvendran RR, Parker ML, Moates GK (1994) Physiol Plant 91:671–679CrossRefGoogle Scholar
  26. 26.
    Marsilio V, Lanza B, De Angelis M (1996) J Sci Food Agric 70:35–43CrossRefGoogle Scholar
  27. 27.
    Orfila C, Seymour GB, Willats WGT, Huxham IM, Jarvis MC, Dover CJ, Thompson AJ, Knox JP (2001) Plant Physiol 126:210–211CrossRefGoogle Scholar
  28. 28.
    Atkinson RG, Schröder R, Hallett IC, Cohen D, MacRae EA (2002) Plant Physiol 129:122–133CrossRefGoogle Scholar
  29. 29.
    Batisse C, Buret M, Coulomb PJ (1996) J Agric Food Chem 44:453–457CrossRefGoogle Scholar
  30. 30.
    O’Donoghue EM, Huber DJ, Timpa JD, Erdos GW, Brecht JK (1994) Planta 194:573–584CrossRefGoogle Scholar
  31. 31.
    Yamaki S, Kakiuchi N (1979) Plant Cell Physiol 20:301–309Google Scholar
  32. 32.
    Yamaki S, Machida Y, Kakiuchi N (1979) Plant Cell Physiol 20:311–321Google Scholar
  33. 33.
    Bourne MC (2002) Food texture and viscosity, 2nd edn. Academic, New YorkGoogle Scholar
  34. 34.
    Pitt RE (1992) Viscoelastic properties of fruits and vegetables. In: Rao MA, Steffe JF (eds) Viscoelastic properties of foods. Elsevier Applied Science, New York, pp 49–76Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Dulcineia Ferreira
    • 1
    • 3
  • José A. Lopes da Silva
    • 1
  • Glória Pinto
    • 2
  • Conceição Santos
    • 2
  • Ivonne Delgadillo
    • 1
  • Manuel A. Coimbra
    • 1
    Email author
  1. 1.Departamento de QuímicaUniversidade de AveiroAveiroPortugal
  2. 2.CESAM, Departamento de BiologiaUniversidade de AveiroAveiroPortugal
  3. 3.Escola Agrária de Viseu, Instituto Politécnico, Quinta da AlagoaViseuPortugal

Personalised recommendations