European Food Research and Technology

, Volume 226, Issue 6, pp 1495–1502 | Cite as

Effects of different Lactobacillus and Enterococcus strains and chemical acidification regarding degradation of gluten proteins during sourdough fermentation

  • Herbert Wieser
  • Nicoline Vermeulen
  • Felizitas Gaertner
  • Rudi F. Vogel
Original Paper


Dough quality and baking performance of wheat dough are significantly affected by the qualitative and quantitative composition of the gluten. Therefore, the degradation was studied of specific fractions of gluten proteins in sourdough as affected by starter cultures. Doughs were fermented for 0, 5, and 24 h at 30 °C after addition of Lactobacillus sakei, L. plantarum, L. sanfranciscensis or Enterococcus faecalis. Chemically acidified doughs were used as controls. All doughs were analyzed quantitatively for their content of albumins, globulins, gliadins, glutenins, and glutenin macropolymer by means of a combined extraction/HPLC procedure. Protein degradation during sourdough fermentation was primarily due to acidic proteases present in flour. While L. sakei, L. plantarum and L. sanfranciscensis were mostly non-proteolytic, E. faecalis clearly contributed to gluten proteolysis. Single gluten protein types were clearly different in their resistance to proteolytic activities of the dough system and E. faecalis, and, in contrast to total glutenins, the amounts of gluten macropolymer were significantly reduced already after 5 h of incubation. When longer fermentation times were applied, gluten was substantially degraded. The strongest decrease was found for the glutenin fraction leading to an increase of alcohol soluble oligomeric proteins in the gliadin fraction. The extent of the decrease of monomeric gliadins was strongest for the γ-type followed by the α- and the ω-types. This indicates that dough properties residing in specific types of gluten fractions can be influenced by the duration of fermentation and the application of proteolytic strains.


Sourdough Lactobacilli Gluten proteins 









Glutenin macropolymer




High-performance liquid chromatography







This research project was supported by the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn), the AiF and the Ministry of Economics and Technology in project-no.: AiF-FV 14492N. The authors thank Mrs. A. Axthelm for excellent technical assistance.


  1. 1.
    Lavermicococca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Appl Environ Microbiol 66:4084–4090CrossRefGoogle Scholar
  2. 2.
    Gänzle MG, Vogel RF (2002) Int J Food Microbiol 80:31–45CrossRefGoogle Scholar
  3. 3.
    Armero E, Collar C (1998) J Cereal Sci 28:165–174CrossRefGoogle Scholar
  4. 4.
    Czerny M, Schieberle P (2002) J Agric Food Chem 50:6835–6840CrossRefGoogle Scholar
  5. 5.
    Thiele C, Gänzle MG, Vogel RF (2002) Cereal Chem 79:45–51CrossRefGoogle Scholar
  6. 6.
    Liljeberg HGM, Björck IME (1996) Am J Clin Nutr 64:886–893Google Scholar
  7. 7.
    Östman EM, Nilson M, Liljeberg-Elmstahl HGM, Molin G, Björck IME (2002) J Cereal Sci 36:339–346CrossRefGoogle Scholar
  8. 8.
    Loponen J, Mikola M, Katina K, Sontag-Strohm T, Salovaara H (2004) Cereal Chem 81:87–93CrossRefGoogle Scholar
  9. 9.
    Wieser H, MacRitchie F, Bushuk W (2006) In: Wrigley C, Bekes F, Bushuk W (eds) AACC International, St. Paul, USA, pp 213–240Google Scholar
  10. 10.
    Thiele C, Grassl S, Gänzle M (2004) J Agric Food Chem 52:1307–1314CrossRefGoogle Scholar
  11. 11.
    Weegels PL, Hamer RJ, Schofield JD (1996) J Cereal Sci 23:1–8CrossRefGoogle Scholar
  12. 12.
    Thiele C, Gänzle MG, Vogel RF (2003) J Agric Food Chem 51:2745–2752CrossRefGoogle Scholar
  13. 13.
    Clark CI, Schober TJ, Dockery P, O´Sullivan P, Arendt EK (2004) Cereal Chem 81:409–417CrossRefGoogle Scholar
  14. 14.
    Bleukx W, Brijs K, Torrekens S, van Leuven F, Delcour JA (1998) Biochim Biophys Acta 1387:317–324Google Scholar
  15. 15.
    Gobbetti M, Smacchi E, Corsetti A (1996) Appl Environ Microbiol 62:3220–3226Google Scholar
  16. 16.
    di Cagno R, de Angelis M, Lavermicocca P, de Vincenzi M, Giovannini C, Faccia M, Gobbetti M (2002) Appl Environ Microbiol 68:623–633CrossRefGoogle Scholar
  17. 17.
    Pepe O, Blaiotta G, Anastasio M, Moschetti G, Ercolini D, Villani F (2004) Syst Appl Microbiol 27:443–453CrossRefGoogle Scholar
  18. 18.
    Vermeulen N, Pavlovic M, Ehrmann MA, Gänzle MG, Vogel RF (2005) Appl Environ Microbiol 71:6260–6266CrossRefGoogle Scholar
  19. 19.
    Wieser H, Antes S, Seilmeier W (1998) Cereal Chem 75:644–650CrossRefGoogle Scholar
  20. 20.
    Wieser H, Seilmeier W Kieffer R, Altpeter F (2005) Cereal Chem 82:594–600CrossRefGoogle Scholar
  21. 21.
    Huebner FR, Bietz JA (1993) Cereal Chem 70:506–511Google Scholar
  22. 22.
    Wieser H, Seilmeier W, Belitz H-D (1991) Getreide Mehl Brot 45:35–38Google Scholar
  23. 23.
    Southan M, MacRitchie F (1999) Cereal Chem 76:827–836CrossRefGoogle Scholar
  24. 24.
    Grosch W, Wieser H (1999) J Cereal Sci 29:1–16CrossRefGoogle Scholar
  25. 25.
    Timmermann F, Belitz H-D (1993) Z Lebensm Unters Forsch 196:5–11CrossRefGoogle Scholar
  26. 26.
    Wehrle K, Crowe N, van Boeijen I, Arendt EK (2000). Eur Food Res Technol 209:428–433CrossRefGoogle Scholar
  27. 27.
    Rollan G, De Angelis M, Gobbetti M, de Valdez GF (2005) J Appl Microbiol 99:1495–1502CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Herbert Wieser
    • 1
  • Nicoline Vermeulen
    • 2
  • Felizitas Gaertner
    • 2
  • Rudi F. Vogel
    • 2
  1. 1.Deutsche Forschungsanstalt für Lebensmittelchemie and Hans-Dieter-Belitz-Institut für Mehl- und EiweißforschungGarchingGermany
  2. 2.Lehrstuhl für Technische MikrobiologieTechnische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations