European Food Research and Technology

, Volume 226, Issue 5, pp 1065–1073 | Cite as

Adhesion and aggregation properties of probiotic and pathogen strains

  • Maria Carmen Collado
  • Jussi Meriluoto
  • Seppo Salminen
Original Paper

Abstract

Autoaggregation has been correlated with adhesion, which is known to be a prerequisite for colonization and infection of the gastrointestinal tract by many pathogens. The coaggregation properties of probiotic strains with pathogens as well as their ability to displace pathogens are of importance for therapeutic manipulation of the aberrant intestinal microbiota. Consequently, the ability to aggregate and coaggregate are desirable properties for probiotics in health-promoting foods. Aggregation assays and bacterial adhesion to hydrocarbons (BATH test) demonstrated significant differences in cell surface properties among the tested commercial probiotic strains. Hydrophobicity increased when the cells were heat-inactivated. All probiotic strains tested showed aggregation abilities with the pathogen strains tested, but the results were strain-specific and dependent on time and incubation conditions. Our results indicate that the ability to autoaggregate, together with cell-surface hydrophobicity and coaggregation abilities with pathogen strains can be used for preliminary screening in order to identify potentially probiotic bacteria suitable for human or animal use.

Keywords

Adhesion Probiotics Pathogens Aggregation 

References

  1. 1.
    FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Food and Agricultural Organization of the United Nations and World Health Organization. Working Group Report, 2002Google Scholar
  2. 2.
    Collins JK, Thornton G, Sullivan GO (1998) Int Dairy J 8:487–490CrossRefGoogle Scholar
  3. 3.
    Ouwehand AC, Salminen S, Isolauri E (2002) Antonie van Leeuwenhoek 82:279–289CrossRefGoogle Scholar
  4. 4.
    Forestier C, De Champs C, Vatoux C, Joly B (2001) Res Microbiol 152:167–173CrossRefGoogle Scholar
  5. 5.
    Guandalini S (2006) J Clin Gastroenterol 40(3):244–248CrossRefGoogle Scholar
  6. 6.
    Katz JA (2006) J Clin Gastroenterol 40(3):249–255CrossRefGoogle Scholar
  7. 7.
    Fooks LJ, Fuller R, Gibson GR (1999) Int Dairy J 9:53–61CrossRefGoogle Scholar
  8. 8.
    Collado MC, González A, González R, Hernández M, Ferrús MA, Sanz Y (2005) Int J Antimicrob Agents 25:385–391CrossRefGoogle Scholar
  9. 9.
    Collado MC, Hernández M, Sanz Y (2005) J Food Prot 68:1034–1040Google Scholar
  10. 10.
    Gagnon M, Kheadr EE, Le Blay G, Fliss I (2004) Int J Food Microbiol 92:69–78CrossRefGoogle Scholar
  11. 11.
    Servin AL (2004) FEMS Microbiol Rev 28:405–440CrossRefGoogle Scholar
  12. 12.
    Freter M (1992) Factors affecting the microecology of the gut. In: Fuller R (ed) Probiotics. the scientific basis. Chapman and Hall, Glasgow, pp 111–145Google Scholar
  13. 13.
    Bibiloni R, Perez PF, Garrote GL, Disalvo EA, De Antoni GL (2001) Methods Enzymol 336:411–427CrossRefGoogle Scholar
  14. 14.
    Canzi E, Guglielmetti S, Mora D, Tamagnini I, Parini C (2005) Antonie Van Leeuwenhoek 88(3–4):207–219CrossRefGoogle Scholar
  15. 15.
    Boris S, Suarez JE, Barbes C (1997) J Appl Microbiol 83(4):413–420CrossRefGoogle Scholar
  16. 16.
    Schachtsiek M, Hammes WP, Hertel C (2004) Appl Environ Microbiol 70(12):7078–7085CrossRefGoogle Scholar
  17. 17.
    Rosenberg M, Gutnick D, Rosenberg M (1980) FEMS Microbiol Lett 9:29–33CrossRefGoogle Scholar
  18. 18.
    Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S (2003) J Appl Microbiol 94:981–987CrossRefGoogle Scholar
  19. 19.
    Reniero R, Cocconcelli P, Bottazzi V, Morelli L (1992) J Gen Microbiol 138:763–768Google Scholar
  20. 20.
    Handley PS, Harty DW, Wyatt JE, Brown CR, Doran JP, Gibbs AC (1987) J Gen Microbiol 133(11):3207–3217Google Scholar
  21. 21.
    Malik A, Sakamoto M, Ono T, Kakii K (2003) J Biosci Bioeng 96:10–15Google Scholar
  22. 22.
    Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Lett Appl Microbiol 31:438–442CrossRefGoogle Scholar
  23. 23.
    Pelletier C, Bouley C, Cayuela C, Bouttier S, Bourlioux P, Bellon-Fontaine MN (1997) Appl Environ Microbiol 63:1725–1731Google Scholar
  24. 24.
    Perez PF, Minnaard Y, Disalvo EA, De Antoni GL (1998) Appl Environ Microbiol 64:21–26Google Scholar
  25. 25.
    Collado MC, Gueimonde M, Hernandez M, Sanz Y, Salminen S (2005) J Food Prot 68(12):2672–2678Google Scholar
  26. 26.
    Jankovic I, Ventura M, Meylan V, Rouvet M, Elli M, Zink R (2003) J Bacteriol 185:3288–3296CrossRefGoogle Scholar
  27. 27.
    Vinderola CG, Medici M, Perdigón G (2004) J Appl Microbiol 96:230–243CrossRefGoogle Scholar
  28. 28.
    Gomez Zavaglia A, Kociubinski G, Perez P, Disalvo E, De Antoni G (2002) J Appl Microbiol 93(5):794–799CrossRefGoogle Scholar
  29. 29.
    Rojas M, Conway PL (1996) J Appl Bacteriol 81:474–480Google Scholar
  30. 30.
    Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS (2003) Trends Microbiol 11:94–100CrossRefGoogle Scholar
  31. 31.
    Spencer RJ, Chesson A (1994) TJ Appl Bacteriol 77:215–220Google Scholar
  32. 32.
    Cesena C, Morelli L, Alander M, Siljander T, Tuomola E, Salminen S, Mattila-Sandholm T, Vilpponen-Salmela T, Von Wright A (2001) J Dairy Sci 84:1001–1010CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Maria Carmen Collado
    • 1
  • Jussi Meriluoto
    • 2
  • Seppo Salminen
    • 1
  1. 1.Functional Foods ForumUniversity of TurkuTurkuFinland
  2. 2.Department of Biochemistry and PharmacyAbo Akademi UniversityTurkuFinland

Personalised recommendations