European Food Research and Technology

, Volume 226, Issue 1–2, pp 225–231 | Cite as

Formation of cadaverine, histamine, putrescine and tyramine by bacteria isolated from meat, fermented sausages and cheeses

Original Paper


Enterobacteriaceae (EB, n = 149), Lactobacillus (LB, n = 162) and Leuconostoc sp. (LC, n = 89) and enterococci (EC, n = 137), isolated from raw meat (n = 65), fermented sausages (n = 50) and cheese (n = 55) samples, were cultivated in a broth containing precursor amino acids (each 3 g/l). After incubation, the liquid culture was chemically analysed for cadaverine (CAD), putrescine (PUT), histamine (HIS) and tyramine (TYR) formation at pH 5.2 and at pH 6.7. The majority of EB isolates (147 of 149) was capable of forming >100 mg/l of either CAD or PUT. Among the most frequently isolated species Hafnia alvei and Serratia liquefaciens, formation of >100 mg/l HIS occurred, but with low prevalence (1.6 and 6.5%, respectively). Twelve of 149 isolates (8%) were able to produce more than 10 mg/l HIS. One hundred forty-two isolates (95.3%) produced less than 10 mg/l TYR, and 7 isolates (4.7%) 10 mg/l to a maximum of 35.3 mg/l TYR. For LB + LC, one isolate (Leuconostoc mesenteroides ssp. mesenteroides) formed >100 mg/l PUT and one >100 mg/l CAD (of all 251 LB + LC isolates 0.4% each). Formation of >100 mg/l HIS and TYR was detected in 3.6 and 19% of the LB + LC isolates, respectively. For the EC isolates, maximum levels for PUT, CAD and HIS were 25.4 mg/l, 6.0 mg/l and 15.7 mg/l, respectively. TYR was formed in quantities of 100–1000 mg/l by 47.9% of EC faecalis (n = 75), and 59.7% of EC faecium (n = 62) isolates. More than 1000 mg/l TYR were formed by 50.7 and 35.5% of the isolates, respectively. A low initial pH of 5.2 compared to the initial pH of 6.7 favoured tyramine production by lactic acid bacteria, but was associated with lower CAD yield by EB.

A considerable intra-species variability in amine formation was observed.


Biogenic amines formation Intra-species variability Raw meat Fermented sausage Cheese 


  1. 1.
    Beutling D (1996) Biogene Amine in der Ernährung. Springer, Wien Berlin New YorkGoogle Scholar
  2. 2.
    Bardocz S (1995) Trends Food Sci Tech 6(19):341–346CrossRefGoogle Scholar
  3. 3.
    Stratton JE, Hutkins RW, Taylor SL (1991) J Food Prot 54(6):460–470Google Scholar
  4. 4.
    Dainty RH, Edwards RA, Hibbard CM, Ramantanis SV (1986) J Appl Bacteriol 61:117–123Google Scholar
  5. 5.
    Edwards RA, Dainty RH, Hibbard CM (1983) J Food Technol 18(6):777–788CrossRefGoogle Scholar
  6. 6.
    Vinci G, Antonelli ML (2002) Food Control 13(8):519–524CrossRefGoogle Scholar
  7. 7.
    Lüthy J, Schlatter C (1983) Z Lebensm Unters Forsch 177:439–443CrossRefGoogle Scholar
  8. 8.
    Shalaby AR (1996) Food Res Int 29(7):675–690CrossRefGoogle Scholar
  9. 9.
    Lehane L, Olley J (2000) Int J Food Microbiol 58:1–37CrossRefGoogle Scholar
  10. 10.
    Maijala R, Eerola S (1993) Meat Sci 35:387–395CrossRefGoogle Scholar
  11. 11.
    Maijala R (1993) Lett Appl Microbiol 17(1):40–43Google Scholar
  12. 12.
    Eerola S, Maijala R, Roig-Sagues AX, Salminen M, Hirvi T (1996) J Food Sci 61(6):1243–1246CrossRefGoogle Scholar
  13. 13.
    Paulsen P, Bauer F (1997) Fleischwirtschaft 77(4):362–364Google Scholar
  14. 14.
    Kalac P, Spicka J, Krizek M, Pelikanova T (2000) Food Chem 70(3):355–359CrossRefGoogle Scholar
  15. 15.
    Bover-Cid S, Hugas M, Izquierdo-Pulido M, Vidal-Carou MC (2001) Int J Food Microbiol 66:185–189CrossRefGoogle Scholar
  16. 16.
    Spicka J, Kalac P, Bover-Cid S, Krizek M (2002) Eur Food Res Technol 215(6):515–519CrossRefGoogle Scholar
  17. 17.
    Beutling D (1994) Arch Lebensmittelhyg 47(4):97–102Google Scholar
  18. 18.
    Suzzi G, Gardini F (2003) Int J Food Microbiol 88(1):41–54CrossRefGoogle Scholar
  19. 19.
    Bover-Cid, S, Holzapfel WH (1999) Int J Food Microbiol 53:33–41CrossRefGoogle Scholar
  20. 20.
    Weber H (1996) Mikrobiologie der Lebensmittel: Fleisch und Fleischerzeugnisse. Behrs’, Hamburg, Germany, pp 313–338Google Scholar
  21. 21.
    Zickrick K (1996) In: Weber H (ed) Mikrobiologie der Lebensmittel: Milch und Milchprodukte. Behrs’, Hamburg, Germany, pp 255–352Google Scholar
  22. 22.
    Mietz JL, Karmas E (1977) J Food Sci 42:155–158CrossRefGoogle Scholar
  23. 23.
    Lozan L, Kausch H (1998) Angewandte Statistik für Naturwissenschaftler. Parey, Berlin, pp 127–129Google Scholar
  24. 24.
    Özogul F, Özogul Y(2006) Eur J Food Res Technol. DOI 10.1007/s00217-006-0429-3Google Scholar
  25. 25.
    Kordesch M (1996) Formation of biogenic amines during storage and spoilage of modified-atmosphere packaged meat. Thesis. Univ Vet Med, Vienna, 96pGoogle Scholar
  26. 26.
    Pötzelberger D (1996) Formation of biogenic amines during storage and spoilage of packaged raw meat, Thesis. Univ Vet Med, Vienna, Austria, 149pGoogle Scholar
  27. 27.
    Anonymous (1993) Oxoid manual, 5th edn. Unipath Corp, Wesel, GermanyGoogle Scholar
  28. 28.
    Behling AR, Taylor SL (1982) J Food Sci 47:1311–1314, 1317CrossRefGoogle Scholar
  29. 29.
    Pircher A (2004) Die Bildung biogener Amine durch Mikrorganismen, isoliert aus Fleisch, Käse und Rohwürsten aus dem Wiener Raum, Thesis. Univ Vet Med, Vienna, 97pGoogle Scholar
  30. 30.
    Koessler KK, Hanke MT, Sheppard MS (1928) J Infect Dis 43:363–377Google Scholar
  31. 31.
    Diaz-Cinco ME, Fraijo G, Grajeda P, Lozano-Taylor J, Gonzalezde E (1992) J Food Sci 57:355–365CrossRefGoogle Scholar
  32. 32.
    Teodorovic V, Buncic S (1999) Fleischwirtschaft 5:85–88Google Scholar
  33. 33.
    Bearson S, Bearson B, Foster JW (1997) FEMS Microbiol Lett 147(2):173–180CrossRefGoogle Scholar
  34. 34.
    Chander H, Batish VH, Babu S, Singh RS (1989) J Food Sci 54:940–942CrossRefGoogle Scholar
  35. 35.
    Straub BW, Tichaczek PS, Kicherer H, Hammes WP (1994) Z Lebensm Unters Forsch 199:9–12CrossRefGoogle Scholar
  36. 36.
    Maijala R, Eerola S, Lievonen S, Hill P, Hirvi T (1993) J Food Prot 56:125–129Google Scholar
  37. 37.
    Silla-Santos MH (1998) Int J Food Microbiol 39:227–230CrossRefGoogle Scholar
  38. 38.
    Marino M, Maifreni M, Moret S, Rondinini G (2000) Lett Appl Microbiol 31:169–173CrossRefGoogle Scholar
  39. 39.
    Durlu-Özkaya F, Ayhan K, Vural N (2001) Meat Sci 58(2):163–166CrossRefGoogle Scholar
  40. 40.
    Moreno-Arribas MV, Polo MC, Jorganes F, Munoz R (2003) Int J Food Microbiol 84:117–123Google Scholar
  41. 41.
    Joosten HMLJ, Northolt MD (1989) Appl Environ Microbiol 55:2356–2359Google Scholar
  42. 42.
    Gonzalez de Llano D, Cuesta P, Rodriguez A (1998) Lett Appl Microbiol 26:270–274CrossRefGoogle Scholar
  43. 43.
    Giraffa G, Pepe G, Locci F, Neviani E, Carminati D (1995) Ital J Food Sci 7(4):341–349Google Scholar
  44. 44.
    Galgano F, Suzzi G, Favati F, Caruso M, Martuschelli M, Gardini F, Sakzani G (2001) Int J Food Sci Technol 36:153–160CrossRefGoogle Scholar
  45. 45.
    Cosentino S, Pisano MB, Corda A, Fadda ME, Piras C (2004) J Dairy Res 71(4):444–450CrossRefGoogle Scholar
  46. 46.
    Brandl E, Asperger H, Pfleger F, Iben C (1985) Arch Lebensm Hygiene 36(1):18–22Google Scholar
  47. 47.
    Paulsen P, Bauer F (2006) Eur Food Res Technol. DOI 10.007/s00217-006-0464-0Google Scholar
  48. 48.
    Hagen U, Bauer F, Paulsen P (2005) Fleischwirtschaft 85(12):128–130Google Scholar
  49. 49.
    Paulsen P, Hagen U, Bauer F (2006) Eur Food Res Technol 223:603–608CrossRefGoogle Scholar
  50. 50.
    Ziegler W, Hahn M, Wallnöfer PR (1994) Dt Lebensm Rundsch 90:108–112Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Meat Hygiene, Meat Technology and Food Science, Department of Veterinary Public HealthUniversity of Veterinary Medicine ViennaViennaAustria

Personalised recommendations