European Food Research and Technology

, Volume 226, Issue 1–2, pp 215–223 | Cite as

Evidence of mixed wild populations of Oenococcus oeni strains during wine spontaneous malolactic fermentations

  • Isabel López
  • Carmen Tenorio
  • Myriam Zarazaga
  • Marta Dizy
  • Carmen Torres
  • Fernanda Ruiz-LarreaEmail author
Original Paper


Two hundred and four bacterial isolates from Rioja red wines undergoing spontaneous malolactic fermentation (MLF) were studied. Bacterial species was determined both by microbiological identification methods and by specific PCR analysis. Oenococcus oeni was shown to be the predominant species (98.5% of total isolates). Pulsed field gel electrophoresis (PFGE) of chromosomal DNA digested with SfiI was used to differentiate individual strains of O. oeni. A wide variety of restriction digest patterns were detected, which indicated a rich biodiversity of indigenous strains. Most fermentations (37 out of 41) showed from 2 to 6 clones growing in the same tank. Five O. oeni strains were the most frequently found, appearing in more than three of the 13 studied wineries, and most times in combination with other less frequently found strains. PFGE was shown to be a suitable method for strain differentiation, for monitoring individual strains and determining which strains actually survive and carry out MLF. A high genotypic heterogeneity of wild O. oeni strains was demonstrated and 90% of the studied wines showed mixed populations of O. oeni strains during MLF.


Oenococcus oeni Wine PFGE Spontaneous malolactic fermentation 



This work was supported by FEDER-CYCIT grant 2FD97-1475 of the European Community and the Spanish Ministry of Science and Technology, by the I.N.I.A. grant VIN00-043-C3, by the University of La Rioja grants API00/B30 and API01/B34, and by the Autonomous Community of La Rioja grant ACPI-ANGI/2000-04. I. López was supported by doctorate grants of the Spanish Ministry of Education and Culture (grant no. AP99 16580683).


  1. 1.
    Cavin JF, Divies C, Guzzo J (1998) La fermentation malolactique. In: Flanzy C (ed) Oenologie. Fondaments scientifiques et technologiques. Technique et documentation Lavoisier, Paris, pp 503–511Google Scholar
  2. 2.
    Boulton RB, Singleton VL, Bisson LF, Kunkee RE (1996) Malolactic fermentation. In Principles and practices of winemaking. The Chapman and Hall Enology Library, New York, pp 244–728Google Scholar
  3. 3.
    Colagrande O, Silva A, Fumi MD (1994) Biotechnol Prog 10:2–18CrossRefGoogle Scholar
  4. 4.
    Maicas S, Gil JV, Pardo I, Ferrer S (1999) Food Res Int 32:491–496CrossRefGoogle Scholar
  5. 5.
    Nielsen JC, Richelieu M (1999) Appl Environ Microbiol 65:740–745Google Scholar
  6. 6.
    Liu SQ (2002) J Appl Microbiol 92:589–601CrossRefGoogle Scholar
  7. 7.
    Bartowsky EJ, Henschke PA (2004) Int J Food Microbiol 96:235–252CrossRefGoogle Scholar
  8. 8.
    Pripis-Nicolau L, De Revel G, Bertrand A, Lonvaud-Funel A (2004) J Appl Microbiol 96:1176–1184CrossRefGoogle Scholar
  9. 9.
    Van Vuuren HJJ, Dicks LMT (1993) Am J Enol Vitic 44:99–112Google Scholar
  10. 10.
    Ribereau-Gayon P, Dubourdieu D, Doneche B, Lonvaud A (1998) Traité d’oenologie. Tome 1. Microbiologie du vin. Vinifications, Dunod, Paris, pp 197–223Google Scholar
  11. 11.
    Krieger SA, Henick-Kling T, Richardson J (2002) Am J Enol Vitic 53:239AGoogle Scholar
  12. 12.
    Guerrini S, Mangani S, Granchi L, Vincenzini M (2002) Curr Microbiol 44:374–378CrossRefGoogle Scholar
  13. 13.
    Lonvaud-Funel A (2001) FEMS Microbiol Lett 199:9–13CrossRefGoogle Scholar
  14. 14.
    Moreno-Arribas MV, Polo MC, Jorganes F, Muñoz R (2003) Int J Food Microbiol 84:117–123Google Scholar
  15. 15.
    Charteris WP, Kelly PM, Morelli L, Collins JK (1997) Int J Food Microbiol 35:1–27CrossRefGoogle Scholar
  16. 16.
    Kelly WJ, Huang CM, Asmundson RV (1993) Appl Environ Microbiol 59:3969–3972Google Scholar
  17. 17.
    Prevost H, Cavin JF, Lamoreux M, Divies C (1995) Am J Enol Vitic 46:43–47Google Scholar
  18. 18.
    Sato H, Yanagida F, Shinohara T, Suzuki M, Suzuki K, Yokotsuka K (2001) FEMS Microbiol Lett 202:109–114CrossRefGoogle Scholar
  19. 19.
    Daniel P, De Waele E, Hallet NJ (1993) Appl Microbiol Biotechnol 38:638–641CrossRefGoogle Scholar
  20. 20.
    Zavaleta AI, Martinez-Murcia AJ, Rodriguez-Valera F (1997) Appl Environ Microbiol 63:1261–1267Google Scholar
  21. 21.
    Parry CE, Zink R, Mills DA (2002) Am J Enol Vitic 53:253Google Scholar
  22. 22.
    Cocconcelli PS, Parisi MG, Senini L, Bottazzi V(1997) Lett Appl Microbiol 25:8–12CrossRefGoogle Scholar
  23. 23.
    Spano G, Beneduce L, Tarantino D, Zapparoli G, Massa S (2002) Lett Appl Microbiol 35:370–374CrossRefGoogle Scholar
  24. 24.
    Bert F, Branger C, Lambert-Zechovsky (1997) Curr Microbiol 34:226–229CrossRefGoogle Scholar
  25. 25.
    Reguant C, Bordons A (2003) J Appl Microbiol 95:344–53CrossRefGoogle Scholar
  26. 26.
    Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) In: Hensyl WR (ed) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, BaltimoreGoogle Scholar
  27. 27.
    Zapparoli G, Torriani S, Pesente P, Dellaglio F (1998) Lett Appl Microbiol 27:243–246CrossRefGoogle Scholar
  28. 28.
    Birren B, Lai E (1993) Pulsed field gel electrophoresis. A practical guide. Academic Press, San Diego, pp 25–74Google Scholar
  29. 29.
    Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995). J Clin Microbiol 33:2233–2239Google Scholar
  30. 30.
    Daniel P (1995) Curr Microbiol 30:243–246CrossRefGoogle Scholar
  31. 31.
    Dicks LMT, Van Vuuren HJJ (1988) J Appl Bacteriol 64:505–513Google Scholar
  32. 32.
    Fleet GH, Lafon-Lafourcade S, Ribéreau-Gayon P (1984) Appl Microbiol Biotechnol 48:1034–1038Google Scholar
  33. 33.
    Lafon-Lafourcade S, Carre E, Ribérau-Gayon P (1983) Appl Environ Microbiol 46:874–880Google Scholar
  34. 34.
    Blasco L, Ferrer S, Pardo I (2003) FEMS Microbiol Lett 225:115–123CrossRefGoogle Scholar
  35. 35.
    Ze-Ze L, Tenreiro R, Brito L, Santos MA, Paveia H (1998) Microbiology 144:1145–56CrossRefGoogle Scholar
  36. 36.
    NCBI data base (2004) Accession no. NZ_AABJ00000000. http://www.ncbi.nlm.nih.govGoogle Scholar
  37. 37.
    Tenreiro R, Santos MA, Pavesa H, Vieira G (1994) J Appl Bacteriol 77:271–280Google Scholar
  38. 38.
    Tynkkynen S, Satokari F, Saarela M, Mattila-Sandholm T, Saxelin M (1999) Appl Environ Microbiol 65:3908–3914Google Scholar
  39. 39.
    Zapparoli G, Reguant C, Bordons A, Torriani S, Dellaglio F (2000) Curr Microbiol 40:351–355CrossRefGoogle Scholar
  40. 40.
    Björkroth J, Ridell J, Korkeala H (1996). Int J Food Microbiol 31:59–68CrossRefGoogle Scholar
  41. 41.
    McEllistrem MC, Stout JE, Harrison LH (2000) J Clin Microbiol 38:351–353Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Isabel López
    • 1
  • Carmen Tenorio
    • 1
  • Myriam Zarazaga
    • 1
  • Marta Dizy
    • 1
  • Carmen Torres
    • 1
  • Fernanda Ruiz-Larrea
    • 1
    Email author
  1. 1.Department of Food and AgricultureUniversity of La RiojaLogroñoSpain

Personalised recommendations