Advertisement

European Food Research and Technology

, Volume 225, Issue 5–6, pp 815–820 | Cite as

Effects of some cations on the formation of acrylamide and furfurals in glucose–asparagine model system

  • Vural GökmenEmail author
  • Hamide Z. Şenyuva
Original Paper

Abstract

A recent patent application and some other studies showed that there is a relation between acrylamide formation and cations. In fact, to date, there is no concrete evidence on the formation or elimination of some compounds in foods and current hypotheses are based only on observations in model systems. To find that this is a logical explanation, we conducted a series of experiments, to show (i) the formation and the elimination of acrylamide with the addition of some cations, and (ii) the formation of hydroxymethylfurfural and furfural in a glucose–asparagine model system. The results indicated that the presence of cations reduced acrylamide formation, but increased hydroxymethylfurfural and furfural formation during heating. There was strong evidence that the cations effectively prevented the formation of Schiff base, which is the key intermediate leading to acrylamide, and mainly changed the reaction path toward the dehydration of glucose leading to hydroxymethylfurfural and furfural.

Keywords

Acrylamide Cations Maillard reaction Hydroxymethylfurfural Furfural 

Notes

Acknowledgement

We thank the Turkish Academy of Sciences (GEBIP Study Grant) and Scientific and Technical Research Council of Turkey (Project TOVAG COST 927–2) for financial support, Ankara Test and Analysis Laboratory for LC-MS analyses, and Agilent Technologies for supplying some consumables.

References

  1. 1.
    Mottram DS, Wedzicha BL, Dodson AT (2002) Nature 419:448–449CrossRefGoogle Scholar
  2. 2.
    Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert M-C, Riediker S (2002) Nature 419:449–450CrossRefGoogle Scholar
  3. 3.
    Yaylayan V-A, Wnorowski A, Perez-Locas C (2003) J Agric Food Chem 51:1753–1757CrossRefGoogle Scholar
  4. 4.
    Zyzak DV, Sanders RA, Stojanovic M, Tallmadge DH, Eberhart BL, Ewald DK, Gruber DC, Morsch TR, Strothers MA, Rizzi GP, Villagran MD (2003) J Agric Food Chem 51:4782–4787CrossRefGoogle Scholar
  5. 5.
    Granvogl M, Scieberle P (2006) J Agric Food Chem 54:5933–5938CrossRefGoogle Scholar
  6. 6.
    Friedman M (2003) J Agric Food Chem 51:4504–4526CrossRefGoogle Scholar
  7. 7.
    Becalski A, Lau BP-Y, Lewis D, Seaman S (2003) J Agric Food Chem 51:802–808CrossRefGoogle Scholar
  8. 8.
    Tareke E, Rydberg P, Karlsson P, Eriksson S, Tornqvist M (2002) J Agric Food Chem 50:4998–5006CrossRefGoogle Scholar
  9. 9.
    Biedermann M, Grob K (2003) Mitt Geb Lebensm Unters Hyg 94:406–422Google Scholar
  10. 10.
    Rydberg P, Eriksson S, Tareke E, Karlsson P, Ehrenberg L, Törnqvist M (2003) J Agric Food Chem 51:7012–7018CrossRefGoogle Scholar
  11. 11.
    Yasuhara A, Tanaka Y, Hengel M, Shibamoto T (2003) J Agric Food Chem 51:3999–4003CrossRefGoogle Scholar
  12. 12.
    Lindsay RC, Jang S (2005) Model systems for evaluating factors affecting acrylamide formation in deep fried foods. In: Friedman M, Mottram DS (eds) Chemistry and safety of acrylamide in food. Springer, Berlin, pp 329–341Google Scholar
  13. 13.
    Tomoda Y, Hanaoka A, Yasuda T, Takayama T, Hiwatashi A (2004) US Patent Application (20040126469)Google Scholar
  14. 14.
    Ehling S, Shibamoto T (2003) J Agric Food Chem 53:4813–4819CrossRefGoogle Scholar
  15. 15.
    Elmore JS, Koutsidis G, Dodson AT, Mottram DS, Wedzicha BL (2005) J Agric Food Chem 53:1286–1293CrossRefGoogle Scholar
  16. 16.
    Gökmen V, Şenyuva HZ (2006) Food Additiv Contam 23(4):348–354CrossRefGoogle Scholar
  17. 17.
    Stadler RH, Robert F, Riediker S, Davidek T, Blank I (2004) J Agric Food Chem 52:5550–5558CrossRefGoogle Scholar
  18. 18.
    Haworth WN, Jones WGM (1944) J Chem Soc 667–670Google Scholar
  19. 19.
    Antal MJ, Mok WSL, Richards GN (1990) Carbohydr Res 199:91–109CrossRefGoogle Scholar
  20. 20.
    Tyrlik SK, Szerszen D, Olejnik M, Danikiewicz W (1999) Carbohydr Res 315:268–272CrossRefGoogle Scholar
  21. 21.
    Nassberger L (1990) Hum Exp Toxicol 9:211–213CrossRefGoogle Scholar
  22. 22.
    Bruce WR, Archer MC, Corpet DE, Medline A, Minkin S, Stamp D, Yin Y, Zhang XM (1993) Mutat Res 290:111–118Google Scholar
  23. 23.
    Zhang XM, Chan CC, Stamp D, Minkin S, Archer MC, Bruce WR (1993) Carcinogenesis 14:773–775CrossRefGoogle Scholar
  24. 24.
    Surh YJ, Liem A, Miller JA, Tannenbaum SR (1994) Carcinogenesis 15:2375–2377CrossRefGoogle Scholar
  25. 25.
    Janzowski C, Glaab V, Samimi E, Schlatter J, Eisenbrand G (2000) Food Chem Toxicol 38:801–809CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Food EngineeringHacettepe UniversityAnkaraTurkey
  2. 2.Ankara Test and Analysis LaboratoryScientific and Technical Research Council of TurkeyAnkaraTurkey

Personalised recommendations