European Food Research and Technology

, Volume 225, Issue 5–6, pp 685–691 | Cite as

Image analysis of osmotically dehydrated fruits: melons dehydration in a ternary system

  • Sueli Rodrigues
  • Fabiano A. N. Fernandes
Original Paper


Osmotic dehydration represents a technological alternative to reduce post-harvest losses of fruits. In this work, the osmotic dehydration of a ternary system (water/sugar/salt) was investigated for melon (Curcumis melo L.) dehydration using image analysis. Three kinds of sugars were used to formulate the osmotic solutions: sucrose, glucose and manitol. The process of osmotic dehydration was studied and the effects of the ternary osmotic system on the fruit shrinkage were investigated using image analysis technique. The experimental study allowed estimating the process parameters of the osmotic dehydration. The results showed the advantage of using high sugar and salt concentrations for the osmotic solution, mild temperatures, and the use of the osmotic treatment to reduce the total processing time to dry the fruit. Image analysis enabled to show how far the solid penetrates inside the fruit and to estimate the shrinkage factor of the fruit during the osmotic dehydration.


Image analysis Cucumis melo L. Osmotic dehydration Drying 


  1. 1.
    Fernandes FAN, Rodrigues S, Gaspareto OCP, Oliveira EL (2006) Food Res Int 39:492–498CrossRefGoogle Scholar
  2. 2.
    Fernandes FAN, Rodrigues S, Gaspareto OCP, Oliveira EL (2006) J Food Eng 77:188–193CrossRefGoogle Scholar
  3. 3.
    Teles UM, Fernandes FAN, Rodrigues S, Lima AS, Maia GA, Figueiredo RW (2006) Int J Food Sci Technol 41:674–680CrossRefGoogle Scholar
  4. 4.
    Sereno AM, Moreira D, Martinez E (2001) J Food Eng 47:43–49CrossRefGoogle Scholar
  5. 5.
    Jayaraman KS, DasGupta DK (1992) Drying Technol 10:1–50CrossRefGoogle Scholar
  6. 6.
    Karathanos VT, Kostaropoulos AE, Saravacos GD (1995) Drying Technol 13:1503–1521CrossRefGoogle Scholar
  7. 7.
    Pokharkar SM, Prasad S, Das H (1997) J Food Sci Technol 34:230–232Google Scholar
  8. 8.
    Torreggiani D (1993) Proc Food Int 26:59–68CrossRefGoogle Scholar
  9. 9.
    Borderías AJ, Guillén-Gómez MC, Hurtado O, Montero P (1999) Eur Food Res Technol 209:104–107CrossRefGoogle Scholar
  10. 10.
    Schäfer H, Schulte E, Their HP (2002) Eur Food Res Technol 215:249–254CrossRefGoogle Scholar
  11. 11.
    Yam KL, Papadakis SE (2004) J Food Eng 61:137–142CrossRefGoogle Scholar
  12. 12.
    Zhou T, Harrison AD, McKellar, Young JC, Odumeru J, Piyasena P, Lu X, Mercer DG, Karr S (2004) Food Res Int 37:875–881Google Scholar
  13. 13.
    Corzo O, Gomes ER (2004) J Food Eng 64:213–219CrossRefGoogle Scholar
  14. 14.
    Demirel D, Turhan M (2003) J Food Eng 59:1–11CrossRefGoogle Scholar
  15. 15.
    Doymaz I (2004) J Food Eng 64:465–470CrossRefGoogle Scholar
  16. 16.
    Fito P (1994) J Food Eng 22:313–328CrossRefGoogle Scholar
  17. 17.
    Agnelli ME, Marani CM, Mascheroni RH (2005) J Food Eng 69:415–424CrossRefGoogle Scholar
  18. 18.
    Tsamo CVP, Bilame AF, Ndjouenkeu R, Nono YJ (2005) LWT – Food Sci Technol 38:495–500Google Scholar
  19. 19.
    Alves DG, Barbosa JL, Antonio GC, Murr FEX (2005) J Food Eng 68:99–103CrossRefGoogle Scholar
  20. 20.
    Babalis SJ, Belessiotis VG (2004) J Food Eng 65:449–458CrossRefGoogle Scholar
  21. 21.
    AOAC (1990). Official methods of analysis. Washington, Association of Official Analytical ChemistsGoogle Scholar
  22. 22.
    Prinzivalli C, Brambilla A, Maffi D, Scalzo RL, Torreggiani D (2006) Eur Food Res Technol (in press). DOI: 10.1007/s00217-006-0298-9Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Departamento de Tecnologia dos AlimentosUniversidade Federal do CearaFortalezaBrazil
  2. 2.Departamento de Engenharia QuimicaUniversidade Federal do CearaFortalezaBrazil

Personalised recommendations