European Food Research and Technology

, Volume 225, Issue 1, pp 9–19 | Cite as

The effect of roasting method on headspace composition of robusta coffee bean aroma

  • Ewa Nebesny
  • Grażyna BudrynEmail author
  • Józef Kula
  • Teresa Majda
Original Paper


Robusta coffee beans were roasted by three methods, i.e. convectively at 230 °C, by microwaves at 700 W, and by the coupled convective–microwave (CMR) method (the simultaneous convective heating at 230 °C and microwaving at 700 W) for 590, 670, and 370 s, respectively. The ultimate temperature of roasted beans was 238, 207, and 228 °C, respectively. Volatile compounds were determined in the headspace by GC-SPME both in samples of roasted coffee and in green beans to find effects of roasting methods on their formation and retention. Eighty-two and 148 odorants were identified in green and roasted coffee, respectively. The highest contents of the latter were found in coffee roasted by the coupled method because both the relatively short time of roasting and moderately high final temperature of beans favored retention of volatile aroma compounds. Because of these reasons, the contents of odorants were the lowest in convectively roasted coffee.


Coffee Volatile substances Microwaves 


  1. 1.
    Sarrazin C, Le Quéré J-L, Gretsch C, Liardon R (2000) Food Chem 70:99–106CrossRefGoogle Scholar
  2. 2.
    Sanz C, Czerny M, Cid C, Schieberle P (2002) Eur Food Res Technol 214:299–302CrossRefGoogle Scholar
  3. 3.
    Czerny M, Mayer F, Grosch W (1999) J Agric Food Chem 47:695–699CrossRefGoogle Scholar
  4. 4.
    Meyer F, Czerny M, Grosch W (1999) Eur Food Res Technol 209:242–250CrossRefGoogle Scholar
  5. 5.
    Schröder I, Stern G, Hojabr-Kalali K, Schliekelmann K, Maier HG (1999) Dutsch Leb-Rundsch 93:216–218Google Scholar
  6. 6.
    Jensen MR, Kirkpatrick SJ, Leppla JK (1994) US Patent, 5,333,703Google Scholar
  7. 7.
    Sivetz M (1991) ASIC 14th Colloque, San Francisco 313–317Google Scholar
  8. 8.
    Le Viet T, Truchement B (1988) CH Patent, 665 754 A5Google Scholar
  9. 9.
    Gerling JF (1984) US Patent, 4,326,114Google Scholar
  10. 10.
    Nebesny E, Budryn G (2006) Eur Food Res Technol, online publication Scholar
  11. 11.
    Nebesny E, Budryn G (2003) Eur Food Res Technol 217:157–163CrossRefGoogle Scholar
  12. 12.
    Nebesny E, Budryn G (2006) Deut Lebensm–Rundsch, in pressGoogle Scholar
  13. 13.
    ISO 10470 (1993)Google Scholar
  14. 14.
    ISO 4149 (1980)Google Scholar
  15. 15.
    Sanz C, Ansorena D, Bello J, Cid C (2001) J Agric Food Chem 49:1364–1369CrossRefGoogle Scholar
  16. 16.
    Lewandowicz G, Jankowski G, Fornal J (2000) Carbohyd Polym 42:193–199CrossRefGoogle Scholar
  17. 17.
    Friedman M, Dao L (1990) J Agric Food Chem 38:805–808CrossRefGoogle Scholar
  18. 18.
    Clarke RJ (1990) Ital J Food Sci 2:79–88Google Scholar
  19. 19.
    Mayer F, Grosch W (2001) Flavour Fragr J 16:180–190CrossRefGoogle Scholar
  20. 20.
    Lee K-G, Shibamoto T (2002) Flavour Fragr J 17:349–351CrossRefGoogle Scholar
  21. 21.
    Ramos E, Valero E, Ibáňez E, Reglero G, Tabera J (1998) J Agric Food Chem 46:4011–4016CrossRefGoogle Scholar
  22. 22.
    Bicchi CP, Panero OM, Pellegrino GM, Vanni AC (1997) J Agric Food Chem 45:4680–4686CrossRefGoogle Scholar
  23. 23.
    Hashim L, Chaveron H (1996) Food Res Int 28:619–623CrossRefGoogle Scholar
  24. 24.
    Belitz HD, Grosch W (1999) Food chemistry. Springer-Verlag, Berlin, Hilderberg, p 322Google Scholar
  25. 25.
    Jung MY, Bock JY, Back SO, Lee TK, Kim JH (1997) Food Chem 60:95–102CrossRefGoogle Scholar
  26. 26.
    Czerny M, Wagner R, Grosch W (1996) J Agric Food Chem 44:3268–3272CrossRefGoogle Scholar
  27. 27.
    Blank I, Sen A, Grosch W (1991) ASIC 14th Colloque, San Francisco 117–128Google Scholar
  28. 28.
    Boosfeld J, Vitzthum OG (1995) J Food Sci 60:1092–1096CrossRefGoogle Scholar
  29. 29.
    Spadone JC, Takeoka G, Liardon R (1990) J Agric Food Chem 38:226–233CrossRefGoogle Scholar
  30. 30.
    Belitz HD, Grosch W (1999) Food chemistry. Springer-Verlag, Berlin, Hilderberg, pp 344–346Google Scholar
  31. 31.
    Hida Y, Matsumoto M, Kudo K, Imamura T, Ikeda N (1997) Int J Legal Med 111:13–16CrossRefGoogle Scholar
  32. 32.
    Nijhuis HH, Torringa HM, Muresan S, Yuksel D, Leguit C, Kloek W (1998) Trends Food Sci Technol 9:13–20CrossRefGoogle Scholar
  33. 33.
    Yoshida H, Kajimoto G (1989) J Food Sci 54:1596--1600Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ewa Nebesny
    • 1
  • Grażyna Budryn
    • 1
    Email author
  • Józef Kula
    • 2
  • Teresa Majda
    • 2
  1. 1.Institute of Chemical Technology of FoodFaculty of Biotechnology and Food Sciences, Technical University of LodzLodzPoland
  2. 2.Institute of Fundamentals of Food ChemistryFaculty of Biotechnology and Food Sciences, Technical University of LodzLodzPoland

Personalised recommendations