European Food Research and Technology

, Volume 221, Issue 3–4, pp 284–290

A thermal treatment to increase the antioxidant capacity of natural phenols: catechin, resveratrol and grape extract cases

  • Manuel Pinelo
  • Monica Rubilar
  • Jorge Sineiro
  • Maria Jose Nuñez
Original Paper

Abstract

In this work, the critical role of temperature (the values assayed were 22, 37 and 60 °C), the chemical characteristics of the medium (ethanol, methanol and water) and the reaction time on the antiradical capacity of phenolic systems was studied. An initial increase and a following decrease in antiradical activity were observed for catechin and resveratrol solutions in all solvents assayed. The maximum antioxidant activity was higher and occurred in a shorter time as the storage temperature was increased or the solvent polarity was decreased. The maximum values of the latter variable in the catechin and resveratrol cases (reaching an antiradical activity value higher than 50% in comparison with the initial one) were detected when oxidation was carried out in ethanol at 60 °C after 6 and 24 h of storage, respectively. Such variations were due to different reaction pathways. In fact, oxidative polymerization and oxidative formation of hydroxyl groups were found to be responsible for the enhancements of antiradical activity in catechin and resveratrol, respectively. A similar trend with variations of temperature in the different media was also observed in the grape extract case. The evolution of antiradical activity was followed by high-performance liquid chromatography analysis, which pointed to the phenol polymerization of the monophenols detected (catechin, gallic acid, epicatechin and quercetin) as mainly responsible for such variations.

Keywords

Antiradical activity Thermal treatment Grape (Vitis viniferaNatural phenols 

References

  1. 1.
    Leja M, Mareczek A, Ben J (2003) Food Chem 80:303–307CrossRefGoogle Scholar
  2. 2.
    Vinson JA, Xuehui S, Zubik L (2001) J Agric Food Chem 49:5315–5321CrossRefGoogle Scholar
  3. 3.
    Gardner PT, White TAC, McPhail DB, Duthie GG (2000) Food Chem 68:471–474CrossRefGoogle Scholar
  4. 4.
    Chen JH, Ho CT (1997) J Agric Food Chem 45:2374–2378CrossRefGoogle Scholar
  5. 5.
    Dziedzic SZ, Hudson BJF, Barnes G (1985) J Agric Food Chem 33:244–246CrossRefGoogle Scholar
  6. 6.
    Shrikhande AJ (2000) Food Res Int 33:55–64CrossRefGoogle Scholar
  7. 7.
    Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA, Joshi SS, Pruess HG (2000) Toxicology 148:187–197CrossRefGoogle Scholar
  8. 8.
    Gjonca A, Bobak M (1997) Lancet 350:1815–1817CrossRefGoogle Scholar
  9. 9.
    Lu Y, Yeap Foo L (1999) Food Chem 65:1–8CrossRefGoogle Scholar
  10. 10.
    Shui G, Leong LP (2002) J Chromatog A 977:89–96CrossRefGoogle Scholar
  11. 11.
    Osada K, Hoshina S, Nakamura S, Sugano M (2001) J Agric Food Chem 48:3823–3829CrossRefGoogle Scholar
  12. 12.
    Roldán A, Palacios V, Caro I, Pérez L (2003) J Agric Food Chem 51:1464–1468CrossRefGoogle Scholar
  13. 13.
    Argilés P, López-Soriano J (1998) Sci World 192Google Scholar
  14. 14.
    Pykett MA, Craig AH, Galley E, Smith C (2001) Int. Patent Appl. WO 2001017495 A1, March 15, 59 ppGoogle Scholar
  15. 15.
    Borod M (2001) US Patent 6228387 B1, May 8, 5 ppGoogle Scholar
  16. 16.
    Cincott A (2001) Int. Patent Appl. WO 2001051088 A1; July 31, 18 ppGoogle Scholar
  17. 17.
    Selleck R (2001) Fruit and vegetable preservative. Int, Patent Appl. WO 2001064041 A1; September 7, 20 ppGoogle Scholar
  18. 18.
    Pinto C, García-Barrado JA, Macías P (2003) J Agric Food Chem 51:1653–1657CrossRefGoogle Scholar
  19. 19.
    Pinelo M, Manzocco L, Núñez MJ, Nicoli MC (2004) J Agric Food Chem 52:1177–1180CrossRefGoogle Scholar
  20. 20.
    Nicoli MC, Manzocco L, Calligaris S (2000) J Agr Food Chem 48:4576–4580CrossRefGoogle Scholar
  21. 21.
    Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Harzfeld PW, Riechel TL (1998) J Agric Food Chem 46:1887–1992CrossRefGoogle Scholar
  22. 22.
    Lu Y, Yeap Foo L (2000) Food Chem 68:81–85CrossRefGoogle Scholar
  23. 23.
    Singleton VL, Rossi JA Jr (1965) Am J Enol Vitic 16:144–158Google Scholar
  24. 24.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Lebensm.-Wiss–Technol 28:5–30Google Scholar
  25. 25.
    Manzocco L, Anese M, Nicoli MC (1998) Lebensm-Wiss–Technol 31:694–698CrossRefGoogle Scholar
  26. 26.
    Saint-Cricq de Gaulejac N, Vivas N, Freitas V, Burgeois G (1999) J Sci Food Agric 79:1081–1090CrossRefGoogle Scholar
  27. 27.
    Pinelo M, Manzocco L, Núñez MJ, Nicoli MC (2004) Food Chem 88:201–207CrossRefGoogle Scholar
  28. 28.
    Madsen HL, Bertelsen G, Skibsted LH (1997) C.-T. (eds) American Chemical Society: Washington, DC pp 176–197Google Scholar
  29. 29.
    Espin JC (2000) J Food Biochem 24:225–250CrossRefGoogle Scholar
  30. 30.
    Kantz K, Singleton VL (1990) Am J Enol Vitic 41:223–228Google Scholar
  31. 31.
    Peng Z, Hayasaka Y, Iland P, Sefton M, Hoj P, Waters EJ (2001) J Agric Food Chem 49:26–31CrossRefGoogle Scholar
  32. 32.
    Yilmaz Y, Toledo RT (2004) J Agric Food Chem 52:255–260CrossRefGoogle Scholar
  33. 33.
    Pérez-Magariño S, González-San José ML (2004) J Agric Food Chem 52:1181–1189CrossRefGoogle Scholar
  34. 34.
    Valgimigli L, Banks JT, Ingold KU, Lusztyk J (1995) J Am Oil Chem Soc 117:9966–9971CrossRefGoogle Scholar
  35. 35.
    Pedrielli P, Pedulli GF, Skibsted LH (2001) J Agric Food Chem 6:3034–3040CrossRefGoogle Scholar
  36. 36.
    Van der Berg R, Haenen GRRM, Van der Berg M, Bast A (1999) Food Chem 66:511–517CrossRefGoogle Scholar
  37. 37.
    Lorimer JW (1972) CHEMTECH 2:359–363Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Manuel Pinelo
    • 1
  • Monica Rubilar
    • 1
  • Jorge Sineiro
    • 1
  • Maria Jose Nuñez
    • 1
  1. 1.Escuela Técnica Superior de IngenieríaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations