Potential DNA–protein cross-link products formed by sugar degradation products: identification of N6-[2-(N2-2′-deoxyguanosyl)propionyl]lysine

  • Carlo C. Peich
  • Wolfgang Seidel
  • Nicole Hanak
  • Rainer Waibel
  • Marc Schneider
  • Monika Pischetsrieder
Original Paper

Abstract

Sugar degradation products are formed during heat treatment of food as well as endogenously in vivo. As reactive carbonyl compounds, they react readily with proteins or DNA to form protein- or DNA-bound advanced glycation end products (glycation reaction or Maillard reaction). In this study, we investigated the formation of potential DNA–protein cross-link products from sugar degradation products. 2′-Deoxyguanosine, l-lysine and different carbohydrates were incubated at 37 °C. The sugar degradation products dihydroxyacetone and d,l-glyceraldehyde lead to the formation of two new cross-link products. The new compounds were isolated by preparative high-performance liquid chromatography and identified by spectral data as the two diastereomers of N6-[2-(N2-2′-deoxyguanosyl)propionyl]lysine. In this structure, the ε-amino group of lysine and the exocyclic amine group of 2′-deoxyguanosine are linked via a carboxyethyl group, derived from the carbohydrate component. The binding sites and the binding types were confirmed by synthesis of the analogous products from N2-(1-carboxyethyl)guanosine and Nα-acetyllysine methyl ester.

Keywords

Advanced glycation end products 2′-Deoxyguanosine Dihydroxyacetone DNA–protein cross-link Glyceraldehyde N6-[2-(N2-2′-Deoxyguanosyl)propionyl]lysine Sugar degradation products 

References

  1. 1.
    Severin T, Hiebl J, Popp-Ginsbach H (1984) Z Lebenm Unters Forsch 178:284–287Google Scholar
  2. 2.
    Nagao M, Fujita Y, Wakabayashi K, Nukaya H, Kosuga T, Sugimura T (1986) Environ Health Perspect 67:89–91Google Scholar
  3. 3.
    Koga K, Yamagishi S, Okamoto T, Inagaki Y, Amano S, et al (2002) Int J Clin Pharmacol Res 22:13–17Google Scholar
  4. 4.
    Seidel W, Pischetsrieder M (1998) Cell Mol Biol 44:1165–1170Google Scholar
  5. 5.
    Seidel W, Pischetsrieder M (1998) Biochim Biophys Acta 1425:478–484Google Scholar
  6. 6.
    Schneider M, Thoss G, Hübner-Parajsz C, Kientsch-Engel R, Stahl P, Pischetsrieder M (2004) Chem Res Toxicol 17:1385–1390CrossRefGoogle Scholar
  7. 7.
    Ochs S, Severin T (1994) Liebigs Ann Chem 851–853Google Scholar
  8. 8.
    Tsapakos MJ, Hampton TH, Wetterhahn KE (1983) Cancer Res 43:5662–5767Google Scholar
  9. 9.
    Gebicki S, Gebicki JM (1999) Biochem J 338:629–636CrossRefGoogle Scholar
  10. 10.
    Nakano T, Terato H, Asagoshi K, Masaoka A, Mukuta H, et al (2003) J Biol Chem 278:25264–25272CrossRefGoogle Scholar
  11. 11.
    Kulcharyk P, Heinecke JW (2001) Biochemistry 40:3648–3656CrossRefGoogle Scholar
  12. 12.
    Kuykendall JR, Bogdanffy MS (1992) Mutat Res 283:131–136CrossRefGoogle Scholar
  13. 13.
    Quievryn G, Zhitkovich A (2000) Carcinogenesis 21:1573–1580CrossRefGoogle Scholar
  14. 14.
    Voitkun V, Zhitkovich A (1999) Mutat Res 424:97–106Google Scholar
  15. 15.
    Nissl J, Ochs S, Severin T (1996) Carbohydr Res 289:55–65CrossRefGoogle Scholar
  16. 16.
    Murata-Kamiya N, Kamiya H (2001) Nucleic Acids Res 29:3433–3438CrossRefGoogle Scholar
  17. 17.
    Papoulis A, al-Abed Y, Bucala R (1995) Biochemistry 32:648–655Google Scholar
  18. 18.
    Hamada Y, Araki N, Koh N, Nakamura J, Horiuchi S, Hotta N (1996) Biochem Biophys Res Commun 228:539–543CrossRefGoogle Scholar
  19. 19.
    Schneider M, Klotzsche M, Werzinger C, Hegele J, Waibel R, Pischetsrieder M (2002) J Agric Food Chem 50:1647–1651CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Carlo C. Peich
    • 1
  • Wolfgang Seidel
    • 1
  • Nicole Hanak
    • 1
  • Rainer Waibel
    • 1
  • Marc Schneider
    • 1
  • Monika Pischetsrieder
    • 1
  1. 1.Institute of Pharmacy and Food ChemistryFriedrich Alexander University Erlangen–NurembergErlangenGermany

Personalised recommendations