Minimizing texture loss of frozen strawberries: effect of infusion with pectinmethylesterase and calcium combined with different freezing conditions and effect of subsequent storage/thawing conditions

  • S. Van Buggenhout
  • I. Messagie
  • V. Maes
  • T. Duvetter
  • A. Van Loey
  • M. HendrickxEmail author
Original Paper


Vacuum infusion (VI), freezing, frozen storage and thawing conditions were optimized in order to minimize the texture loss of frozen strawberries. Slow freezing caused severe loss in textural quality of the strawberries. This quality loss could not be prevented by the application of VI prior to slow freezing, or by the application of rapid, cryogenic or high-pressure shift freezing conditions on non-infused fruits. A remarkable texture improvement was noticed when infusion of pectinmethylesterase (PME) and calcium was combined with rapid or cryogenic freezing. The highly beneficial effect of PME/Ca-infusion followed by HPSF on the hardness retention of frozen strawberries was ascribed to the combined effect of the infused PME (53% reduction in degree of esterification (DE) of the strawberry pectin) and the high degree of supercooling during HPSF. During frozen storage, textural quality of PME/Ca-infused high-pressure frozen strawberries was maintained at temperatures below −8 °C, whereas the texture of PME/Ca-infused strawberries frozen under cryogenic freezing conditions was only preserved at temperatures below −18 °C. Thawing at room temperature seemed to be an appropriate method to thaw strawberries. Fast thawing by high-pressure induced thawing (HPIT) did not prevent textural quality loss of frozenstrawberries.


Texture Pectinmethylesterase-calcium infusion Pectin High-pressure shift freezing Cryogenic freezing Frozen storage High-pressure induced thawing 



This work was financially supported by European Project SAFE ICE (QLK1-2002-02230) from the Quality of Life and Management Resources Program.


  1. 1.
    Brown MS (1967) J Sci Food Agric 18:77–83CrossRefGoogle Scholar
  2. 2.
    Shi X, Datta AK (1999) J Thermal Stresses 22:275–292. DOI 10.1080/014957399280878CrossRefGoogle Scholar
  3. 3.
    Partmann W (1975) In Duckworth RB (ed) Water relations of foods. Academic Press, London, pp 505–537Google Scholar
  4. 4.
    Fuchigami M, Kato N, Teramoto A (1997) J Food Sci 62:804–808CrossRefGoogle Scholar
  5. 5.
    Fuchigami M, Teramoto A (1997) J Food Sci 62:828–832CrossRefGoogle Scholar
  6. 6.
    Otero L, Solas MT, Sanz PD, de Elvira C, Carrasco JA (1998) Z Lebensm Unters Forsch A 206:338–342CrossRefGoogle Scholar
  7. 7.
    Otero L, Martino M, Zaritzky N, Solas M, Sanz PD (2000) J Food Sci 65:466–470CrossRefGoogle Scholar
  8. 8.
    Seow CC, Vasanti Nair CK, Lee BS (1995) In: Barbosa-Canovas GV, Welti-Chanes J eds, Food preservation by moisture control. Fundamentals and control. Technomic, Lancaster, PA, pp 697–728Google Scholar
  9. 9.
    Fennema O (1973) In: Fennema O, Powrie WD, Marth EH (eds) Low-temperature preservation of foods and living matter. Marcel Dekker, New York, pp 151–239Google Scholar
  10. 10.
    Gormley R, Walshe T, Hussey K, Butler F (2002) Lebensm Wiss u Technol 35:190–200. DOI 10.1006/fstl.2001.0837CrossRefGoogle Scholar
  11. 11.
    Forni E, Crivelli G, Polesello A, Ghezzi M (1991) J Food Proc Pres 15:379–389CrossRefGoogle Scholar
  12. 12.
    Alvarez DM, Canet W (2000) Eur Food Res Technol 210:273–279. DOI 10.1007/s002179900092CrossRefGoogle Scholar
  13. 13.
    Slade L, Levine H (1991) Crit Rev Food Sci Nutr 30:115–360CrossRefGoogle Scholar
  14. 14.
    Zaritzky NE (2000) In: Kennedy CJ (ed) Managing frozen foods. CRC Press, Boca Raton, IL, pp 111–135Google Scholar
  15. 15.
    Lebail A, Chevalier D, Mussa DM, Ghoul M (2002) Int J Refrig 25:504–513. DOI 10.1016/S0140-7007(01)00030-5CrossRefGoogle Scholar
  16. 16.
    Waldron KW, Parker ML, Smith AC (2003) Comp Rev Food Sci Safety 2:101–119CrossRefGoogle Scholar
  17. 17.
    Van Buren JP (1979) J Food Sci 65:968–973Google Scholar
  18. 18.
    Morris JR, Main GL, Sistrunk WA (1991) J Food Qual 14:467–479CrossRefGoogle Scholar
  19. 19.
    Alonso J, Canet W, Rodriguez T (1997) J Food Sci 62:511–515CrossRefGoogle Scholar
  20. 20.
    Alonso J, Rodriguez T, Canet W (1995) J Agric Food Chem 43:1011–1016. DOI 10.1021/jf00052a031CrossRefGoogle Scholar
  21. 21.
    Suutarinen J, Heiska K, Moss P, Autio K (2000) Lebensm Wiss u Technol 33:89–102. DOI 10.1006/fstl.1999.0616CrossRefGoogle Scholar
  22. 22.
    Suutarinen J, Honkapää K, Heiniö RL, Mustranta A, Liukkonen-Lilja H, Mokkila M (2002) J Food Sci 67:1240–1248CrossRefGoogle Scholar
  23. 23.
    Javeri H, Toledo R, Wicker L (1991) J Food Sci 56:739–742CrossRefGoogle Scholar
  24. 24.
    Degraeve P, Saurel R, Coutel Y (2003) J Food Sci 68:716–721CrossRefGoogle Scholar
  25. 25.
    Duvetter T, Fraeye I, Van Hoang T, Van Buggenhout S, Verlent I, Smout C, Van Loey A, Hendrickx M (2005) J Food Sci, in pressGoogle Scholar
  26. 26.
    Martinez-Monzo J, Martinez-Navarette N, Chiralt A, Fito P (1998) J Food Sci 63(3):499–503CrossRefGoogle Scholar
  27. 27.
    Xie J, Zhao Y (2003) J Hort Sci Biotech 78:248–253Google Scholar
  28. 28.
    International Institute of Refrigeration (1972) Recommendation for the processing and handling of frozen food. International Institute of Refrigeration, ParisGoogle Scholar
  29. 29.
    Hardenburg RE, Watada AE, Wang CY (1986) The commercial storage of fruits, vegetables and florist and nursery stocks. USDA-ARS Agriculture Handbook Number 66Google Scholar
  30. 30.
    McFeeters RF, Armstrong SA (1984) Anal Biochem 139:212–217. DOI 10.1016/0003-2697(84)90407-XCrossRefGoogle Scholar
  31. 31.
    Ng A, Waldron KW (1997) J Sci Food Agric 73:503–512. DOI 10.1002/(SICI)1097-0010(199704)73:4<503::AID-JSFA762>3.0.CO;2-ZCrossRefGoogle Scholar
  32. 32.
    Klavons JA, Bennett RD (1986) J Agric Food Chem 34:597–599. DOI 10.1021/jf00070a004CrossRefGoogle Scholar
  33. 33.
    Ahmed AER, Labavitch JM (1977) J Food Biochem 1:361–365CrossRefGoogle Scholar
  34. 34.
    Blumenkrantz N, Asboe-Hansen G (1973) Anal Biochem 54:484–489. DOI 10.1016/0003-2697(73)90377-1CrossRefGoogle Scholar
  35. 35.
    Banjongsinsiri P, Kenney J, Wicker L (2004) J Food Sci 69:179–183Google Scholar
  36. 36.
    Terefe NS, Hendrickx ME (2002) Biotechnol Prog 18:221–228. DOI 10.1021/bp010162eCrossRefGoogle Scholar
  37. 37.
    Cano MP (1996) In: Jeremiah LE (ed) Freezing effects on food quality. Marcel Dekker, New York, pp 247–298Google Scholar
  38. 38.
    Rouillé J, Lebail A, Ramaswamy HS, Leclerc L (2002) J Food Eng 53:83–88. DOI 10.1016/S0260-8774(01)00143-1CrossRefGoogle Scholar
  39. 39.
    Zhu S, Ramaswamy HS, Simpson BK (2004) LebensmWiss u Technol 37:291–299. DOI 10.1016/j.lwt.200sss3.09.004CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • S. Van Buggenhout
    • 1
  • I. Messagie
    • 1
  • V. Maes
    • 1
  • T. Duvetter
    • 1
  • A. Van Loey
    • 1
  • M. Hendrickx
    • 1
    Email author
  1. 1.Laboratory of Food Technology, Center of Food and Microbial TechnologyFaculty of Bioscience Engineering, Katholieke UniversiteitLeuven (Heverlee)Belgium

Personalised recommendations