European Food Research and Technology

, Volume 223, Issue 3, pp 333–340 | Cite as

Mixing properties of fibre-enriched wheat bread doughs: A response surface methodology study

  • C. M. Rosell
  • E. Santos
  • C. Collar
Original Paper


Fibre-enriched baked goods have increasingly become a convenient carrier for dietary fibre. However, the detrimental effect of fibres on dough rheology and bread quality continuously encourages food technologists to look for new fibres. The effect of several fibres (Fibruline, Fibrex, Exafine and Swelite) from different sources (chicory roots, sugar beet and pea) on dough mixing properties when added singly or in combination has been investigated by applying a response surface methodology to a Draper-Lin small composite design of fibre-enriched wheat dough samples. Major effects were induced on water absorption by Fibrex that led to a significant increase of this parameter, accompanied by a softening effect on the dough, more noticeable when an excess of mixing was applied. Conversely, Exafine increased water absorption without affecting the consistency and stability of dough, which even improved when combined with Swelite. Fibruline showed little effect on dough mixing parameters, but showed synergistic effects with pea fibres. The overall result indicates that the use of an optimised combination of fibres in the formulation of fibre-enriched dough allow improving dough functionality during processing.


Dietary fibre Wheat dough Rheology Mixing dough properties 



Authors acknowledge the financial support of Spanish Institution Ministerio de Ciencia y Tecnologia (Project AGL 2005-05192-C04-01/AL1.


  1. 1.
    AACC (2001) Cereal Food World 46:112–126Google Scholar
  2. 2.
    Rigaud D, Paycha F, Meulemans A, Merrouche M, Mignon M (1998) Eur J Clin Nutr 52:239–245CrossRefPubMedGoogle Scholar
  3. 3.
    Mozaffarian D, Kumanyika SK, Lemaitre RN, Olson JL, Burke GL, Siscovick DS (2003) J Am Med Assoc 289:1659–1666CrossRefGoogle Scholar
  4. 4.
    Jensen MK, Koh-Banerjee P, Hu FB, Franz M, Sampson L, Gronbaek M, Rimm EB (2004) Am J Clin Nutr 80:1492–1499PubMedGoogle Scholar
  5. 5.
    Whitehead RH (1986) Gut 27:1457–1463PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson JW (1991) Am J Clin Nutr 54:678–683PubMedGoogle Scholar
  7. 7.
    Wang J, Rosell CM, Benedito C (2002) Food Chem 79:221–226CrossRefGoogle Scholar
  8. 8.
    Sangnark A, Noomhorm A (2004) Lebensm. Wiss.u-Technol 37:697–704CrossRefGoogle Scholar
  9. 9.
    Sangnark A, Noomhorm A (2004) Food Res Int 37:66–74CrossRefGoogle Scholar
  10. 10.
    Pomeranz Y, Shogren M, Finney KF, Bechtel DB (1977) Cereal Chem 54:25–41Google Scholar
  11. 11.
    Knuckles BE, Hudson CA, Chiu MM, Sayre RN (1997) Cereal Food World 42(2):94–100Google Scholar
  12. 12.
    Lai CS, Hoseney RC, Davis AB (1989) Cereal Chem 66:217–219Google Scholar
  13. 13.
    Gómez M, Ronda F, Blanco CA, Caballero PA, Apesteguía A (2003) Eur Food Res Technol 216:51–56Google Scholar
  14. 14.
    Marin G, Montfort JP (1996) Rheology for polymer melt processing. Elsevier, AmsterdamCrossRefGoogle Scholar
  15. 15.
    Collar C, Bollaín C (2004) Eur Food Res Technol 218:139–146CrossRefGoogle Scholar
  16. 16.
    Collar C, Bollaín C (2005) Eur Food Res Technol 220:372–379CrossRefGoogle Scholar
  17. 17.
    ICC-Standard No 110/1 Approved 1960, Revised 1976Google Scholar
  18. 18.
    ICC-Standard No 105/2 Approved 1980, revised 1994Google Scholar
  19. 19.
    ICC-Standard No 104/1 Approved 1960, revised 1990Google Scholar
  20. 20.
    ICC-Standard No 136 Approved 1984Google Scholar
  21. 21.
    ICC-Standard No 155 Approved 1994Google Scholar
  22. 22.
    ICC-Standard No 107/1 Approved 1968, revised 1995Google Scholar
  23. 23.
    ICC-Standard No 121 Approved 1972, revised 1992Google Scholar
  24. 24.
    AACC (1999) Method 56–30 Approved Methods of the American Association of Cereal Chemists. The Association, St Paul, MNGoogle Scholar
  25. 25.
    ICC-Standard No 115/1 Approved 1972, revised 1992Google Scholar
  26. 26.
    Dreher ML (1987) Handbook of dietary fibre: an applied approach. Marcel Dekker, New YorkGoogle Scholar
  27. 27.
    Abdul-Hamid A, Luan YS (2000) Food Chem 68:15–19CrossRefGoogle Scholar
  28. 28.
    Guillon F, Champ M (2000) Food Res Technol 33:233–245Google Scholar
  29. 29.
    Sosulski FW, Cadden AM (1982) J Food Sci 47:1472–1477CrossRefGoogle Scholar
  30. 30.
    Pomeranz Y (1985) Functional properties of food components. Academic Press, New YorkGoogle Scholar
  31. 31.
    Zhang D, Moore WR (1997) J Sci Food Agric 74:490–496CrossRefGoogle Scholar
  32. 32.
    Sidhu JS, al-Hooti SN, Al-Saqer JM (1999) Food Chem 67:365–371CrossRefGoogle Scholar
  33. 33.
    Kenny S, Grau H, Arendt EK (2001) Eur Food Res Technol 213:323–328CrossRefGoogle Scholar
  34. 34.
    Magnus EM, Brathen E, Sahlstrom S, Mosleth Faergestad E, Ellekjaer MR (1997) J Cereal Sci 25:289–231CrossRefGoogle Scholar
  35. 35.
    Park H, Seib PA, Chung OK (1997) Cereal Chem 74:207–211CrossRefGoogle Scholar
  36. 36.
    Collar C, Andreu P, Martínez JC, Armero E (1999) Food Hyd 13:467–475CrossRefGoogle Scholar
  37. 37.
    Chen H, Rubenthaler GL, Schanus EG (1988) J Food Sci 53:304–305CrossRefGoogle Scholar
  38. 38.
    Krishnan PB, Chang KC, Brown G (1987) Cereal Chem 64:55–58Google Scholar
  39. 39.
    Laurikainen T, Harkonen H, Autio K, Poutanen K (1998) J Sci Food Agric 76:239–249CrossRefGoogle Scholar
  40. 40.
    Michniewicz J, Biliaderis CG, Bushuk W (1991) Cereal Chem 68:252–258Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Instituto de Agroquímica y Tecnología de Alimentos (CSIC)ValenciaSpain

Personalised recommendations