Advertisement

European Food Research and Technology

, Volume 222, Issue 5–6, pp 737–740 | Cite as

Effect of dry heated inulin on selected intestinal bacteria

  • A. Böhm
  • B. Kleessen
  • T. HenleEmail author
Short Communication

Abstract

Degradation of a sample of high-molecular (degree of polymerisation, DP, between 13 and 30) and low-molecular (DP below 12) inulin from Jerusalem artichoke during dry heating for 30 min at 165 and 195 °C was analysed using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and thin layer chromatography. Dry heating at 195 °C induced complete degradation of the fructan chains and the concomitant formation of low-molecular degradation products, most likely di-d-fructose dianhydrides. In vitro fermentation studies using mixed faecal samples of eight human volunteers for 24 h at 37 °C showed significant stimulation of the growth of bifidobacteria and Enterobacteriaceae and a significant decrease of possibly pathogenic bacteria of the Clostridium histolyticum and C. lituseburense group by inulin samples heated at 195 °C compared to unheated samples and samples heated at 165 °C. This preliminary data may point to the hypothesis that heat-treated inulin or its degradation products may cause improvements of the gut microflora superior to native inulin.

Keywords

Inulin Thermal treatment Bifidobacteria Di-d-fructose dianhydride 

References

  1. 1.
    Kleessen B, Hartmann L, Blaut M (2003) Br J Nutr 89:597–606CrossRefPubMedGoogle Scholar
  2. 2.
    Kleessen B, Hartmann L, Blaut M (2001) Br J Nutr 86:291–300PubMedCrossRefGoogle Scholar
  3. 3.
    Kleessen B, Sykura B, Zunft HJ, Blaut M (1997) Am J Clin Nutr 65:1397–1402PubMedGoogle Scholar
  4. 4.
    Gibson GR, Beatty EB, Wang X, Cummings JH (1995) Gastroenterology 108:975–982Google Scholar
  5. 5.
    Gibson GR, Roberfroid MB (1995) J Nutr 125:1401–1412PubMedGoogle Scholar
  6. 6.
    Coudray C, Tressol JC, Gueux E, Rayssiguier Y (2003) Eur Food Res Technol 27:125–132Google Scholar
  7. 7.
    Roberfroid MB (1999) J Nutr 129:1398S–1401SPubMedGoogle Scholar
  8. 8.
    Böhm A, Kaiser I, Trebstein A, Henle T (2005) Eur Food Res Technol 220:466–471CrossRefGoogle Scholar
  9. 9.
    Orban JI, Patterson JA, Sutton AL, Richards GN (1997) Poult Sci 76:482–490PubMedGoogle Scholar
  10. 10.
    Saito K, Hira T, Suzuki T, Hara H, Yokota A, Tomita F (1999) Biosci Biotech Biochem 63:655–661CrossRefGoogle Scholar
  11. 11.
    Tanaka M, Nakajima Y, Nishio K (1993) J Carbohydr Chem 12:49–62CrossRefGoogle Scholar
  12. 12.
    Blize AE, Manley-Harris M, Richards GN (1994) Carbohyrdr Res 265:31–39CrossRefPubMedGoogle Scholar
  13. 13.
    Wang X, Gibson GR (1993) J Appl Bacteriol 75:373–380PubMedGoogle Scholar
  14. 14.
    Hartemink R, van Laere KMJ, Rombouts FM (1997) J Appl Bacteriol 83:367–374Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Food ChemistryTechnische Universität DresdenDresdenGermany
  2. 2.Institute of Bacteriology and MycologyVeterinary Faculty, University of LeipzigLeipzigGermany

Personalised recommendations