European Food Research and Technology

, Volume 222, Issue 3–4, pp 439–442 | Cite as

Rheological behaviour of Galician honeys

  • Diego Gómez-Díaz
  • José M. Navaza
  • Lourdes C. Quintáns-Riveiro
Original Paper


In the present paper, rheological behaviour of different Galician honeys (north-west of Spain) with the specific designation “miel de Galicia” (Galician honey) has been analysed to classify this food such as a Newtonian or non-Newtonian fluid. To carry out this study, a rotational viscosimeter has been used to analyse the effect of time and shear rates upon the apparent viscosity. Measurements have been carried out at 25 °C. The work developed in the present paper indicates that Galician honeys have a pseudoplastic behaviour in all cases when low values of shear rate are applied. For this reason, Ostwald model (power law) to correlate pseudoplastic behaviour has been used to fit experimental data with acceptable results.


Shear Rate Sugar Content Rheological Behaviour Apparent Viscosity Behaviour Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the Regional Government (Xunta de Galicia) to our work (PGIDIT03TAM20902PR) is gratefully acknowledged


  1. 1.
    Steffe JF (1996) Rheological methods in food process engineering, 2nd edn. Freeman Press, East Lansing, USAGoogle Scholar
  2. 2.
    Assil HI, Sterling R, Sporns P (1991) J Food Eng 56:1034–1037Google Scholar
  3. 3.
    Junzheng P, Changying J (1998) J Food Eng 36:165–168CrossRefGoogle Scholar
  4. 4.
    Bhandari B, D’Arcy B, Nelly C (1999) Int J Food Prop 2:217–226CrossRefGoogle Scholar
  5. 5.
    Doner LW, Hicks KB (1982) In: Food carbohydrates. AVI Publishing Company, West Port, USAGoogle Scholar
  6. 6.
    Lazaridou A, Biliaderis CG, Bacandritsos N, Sabatini AG (2004) J Food Eng 64:9–21CrossRefGoogle Scholar
  7. 7.
    Al-Khalifa AS, Al-Arify IA (1999) Food Chem 67:21–25CrossRefGoogle Scholar
  8. 8.
    Anupama D, Bhat KK, Sapna VK (2003) Food Res Int 36:183–191CrossRefGoogle Scholar
  9. 9.
    Gómez-Barez JA, García-Villanova RJ, Elvira-García S, Rivas-Pala T, González-Paramas AM, Sánchez-Sánchez J (2000) Eur Food Res Technol 210:437–444CrossRefGoogle Scholar
  10. 10.
    White JW (1978) Adv Food Res 24:288–354Google Scholar
  11. 11.
    Mossel B, Bhandari B, D’Arcy B, Caffin N (2000) Lebens-Wiss Technol 33:545–552CrossRefGoogle Scholar
  12. 12.
    Abu-Jdayil B, Ghzawi AA, Al-Malah KIM, Zaitoun S (2002) J Food Eng 51:33–38CrossRefGoogle Scholar
  13. 13.
    Chataway HD (1935) Can Bee J 43:215–220Google Scholar
  14. 14.
    Sopade PA, Halley P, Bhandari B, D’Arcy B, Doebler C, Caffin N (2002) J Food Eng 56:67–75CrossRefGoogle Scholar
  15. 15.
    Ibanoglu E (2002) J Food Eng 52:273–277CrossRefGoogle Scholar
  16. 16.
    Gómez-Díaz D, Navaza JM (2003) J Food Eng 56:387–392CrossRefGoogle Scholar
  17. 17.
    Jusczak L, Witczak M, Fortuna T, Banys A (2004) J Food Eng 63:209–217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Diego Gómez-Díaz
    • 1
  • José M. Navaza
    • 1
  • Lourdes C. Quintáns-Riveiro
    • 1
  1. 1.Department of Chemical Engineering, ETSEUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations