European Food Research and Technology

, Volume 223, Issue 1, pp 22–29 | Cite as

Quantitative analysis of physical and chemical measurands in honey by mid-infrared spectrometry

  • Kaspar Ruoff
  • María Teresa Iglesias
  • Werner Luginbühl
  • Jacques-Olivier Bosset
  • Stefan Bogdanov
  • Renato Amadò
Original Paper

Abstract

Fourier transform infrared spectroscopy (FT-IR) was used to determine 20 different measurands in honey. The reference values for 144 honey samples of different botanical origin were determined by classical physical and chemical methods. Partial least squares regression was used to develop the calibration models for the measurands studied. They were validated using independent samples and proved satisfying accuracies for the determination of water (R2=0.99), glucose (0.94), fructose (0.84), sucrose (0.91), melezitose (0.98) and monosaccharide content (0.82) as well as fructose/glucose ratio (0.98), glucose/water ratio (0.94), electrical conductivity (0.98), pH-value (0.87) and free acidity (0.96). The prediction accuracy for hydroxymethylfurfural, proline and the minor sugars maltose, turanose, erlose, trehalose, isomaltose and kojibiose was rather poor. The results demonstrate that mid-infrared spectrometry is a valuable, rapid and non-destructive tool for the quantitative analysis of the most important measurands in honey.

Keywords

Honey Fourier transform Infrared spectrometry FT-IR ATR Sugar 

References

  1. 1.
    Codex Alimentarius Committee on Sugars (2001) Standards Standard Meth 11:1–7Google Scholar
  2. 2.
    EU-Council (2002) Off J Eur Comm L10:47–52Google Scholar
  3. 3.
    Cho HJ, Hong SH (1998) J Near Infrared Spectr 6:A329–A331Google Scholar
  4. 4.
    Qiu PY, Ding HB, Tang YK, Xu RJ (1999) J Agric Food Chem 47:2760–2765CrossRefGoogle Scholar
  5. 5.
    Garcia-Alvarez M, Huidobro JF, Hermida M, Rodriguez-Otero JL (2000) J Agric Food Chem 48:5154–5158CrossRefGoogle Scholar
  6. 6.
    Cozzolino D, Corbella E (2003) J Apic Res 42:16–20Google Scholar
  7. 7.
    Garcia Alvarez M, Ceresuela S, Huidobro JF, Hermida M, Rodriguez Otero JL (2002) J Agric Food Chem 50:419–425CrossRefGoogle Scholar
  8. 8.
    Lichtenberg-Kraag B, Hedtke C, Bienefeld K (2002) Apidologie 33:327–337CrossRefGoogle Scholar
  9. 9.
    Tewari J, Irudayaraj J (2004) J Agric Food Chem 52:3237–3243CrossRefGoogle Scholar
  10. 10.
    Irudayaraj J, Sivakesava S (2001) Trans Am Soc Agric Eng 44:643–650Google Scholar
  11. 11.
    Sivakesava S, Irudayaraj J (2001) J Food Sci 66:787–792CrossRefGoogle Scholar
  12. 12.
    Sivakesava S, Irudayaraj J (2002) Int J Food Sci Technol 37:351–360CrossRefGoogle Scholar
  13. 13.
    Sivakesava S, Irudayaraj J (2001) J Sci Food Agric 81:683–690CrossRefGoogle Scholar
  14. 14.
    Sivakesava S, Irudayaraj J (2001) J Food Sci 66:972–978CrossRefGoogle Scholar
  15. 15.
    Kelly JFD, Downey G, Fouratier V (2004) J Agric Food Chem 52:33–39CrossRefGoogle Scholar
  16. 16.
    Bogdanov S, Martin P, Lüllmann C (1997) Apidologie 1–59Google Scholar
  17. 17.
    von der Ohe W, Persano Oddo L, Piana L, Morlot M, Martin P (2004) Apidologie 35Google Scholar
  18. 18.
    Persano Oddo L, Piro R (2004) Apidologie 35:S38–S81CrossRefGoogle Scholar
  19. 19.
    Persano Oddo L, Piazza MG, Sabatini AG, Accorti M (1995) Apidologie 26:453–465CrossRefGoogle Scholar
  20. 20.
    White JW, Riethof ML, Subers MH, Kushnir I (1962) Bull Tech US Dept Agric 1–65Google Scholar
  21. 21.
    Thrasyvoulou A, Manikis I (1997) Melissokomiki Epitheorisi 11:107–109Google Scholar
  22. 22.
    Manikis I, Thrasyvoulou A (2001) Apiacta 36:106–112Google Scholar
  23. 23.
    Hadorn H, Zürcher K (1974) Mitt Gebiete Lebensm Hyg 65:407–420Google Scholar
  24. 24.
    Soria AC, Gonzalez M, Lorenzo C, Martinez-Castro I, Sanz J (2005) J Sci Food Agric in pressGoogle Scholar
  25. 25.
    Bogdanov S, Rieder K, Rüegg M (1987) Apidologie 18:267–278CrossRefGoogle Scholar
  26. 26.
    Low NH, Sporns P (1988) J Food Sci 53:558–561CrossRefGoogle Scholar
  27. 27.
    Sabatini AG, Persano Oddo L, Piazza MG, Accorti M, Marcazzan G (1990) Apicoltura 6:63–70Google Scholar
  28. 28.
    Goodall I, Dennis MJ, Parker I, Sharman M (1995) J Chromatogr A 706:353–359CrossRefGoogle Scholar
  29. 29.
    Mateo R, Bosch-Reig F (1997) Food Chem 60:33–41CrossRefGoogle Scholar
  30. 30.
    Radovic BS, White R, Parker I, Dennis MJ, Sharman M, Geiss H, Anklam E (2001) Deutsche Lebensmittel-Rundschau 97:380–384Google Scholar
  31. 31.
    Low NH, South W (1995) J Assoc Off Anal Chem Int 78:1106–1113Google Scholar
  32. 32.
    Swallow KW, Low NH (1994) J AOAC Int 77:695–702Google Scholar
  33. 33.
    Lipp J, Ziegler H, Conrady E (1988) Z Lebensm Unters Forsch 187:334–338CrossRefGoogle Scholar
  34. 34.
    Doner LW, White JW, Phillips JG (1979) J Assoc Off Anal Chem 62:186–189Google Scholar
  35. 35.
    Krauze A, Zalewski RI (1991) Z Lebensm Unters Forsch 192:19–23CrossRefGoogle Scholar
  36. 36.
    Sanz ML, Gonzalez M, de Lorenzo C, Sanz J, Martinez-Castro I (2005) Food Chem 91:313–317CrossRefGoogle Scholar
  37. 37.
    von der Ohe W, Dustmann JH, von der Ohe K (1991) Dtsch Lebensm Rundschau 87:383–386Google Scholar
  38. 38.
    Mateo R, BoschReig F (1998) J Agric Food Chem 46:393–400CrossRefGoogle Scholar
  39. 39.
    Vorwohl G (1964) Ann Abeille 7:301–309CrossRefGoogle Scholar
  40. 40.
    Vorwohl G (1964) Z Bienenforsch 7:37–47Google Scholar
  41. 41.
    Talpay B (1985) Dtsch Lebensmittel Rundschau 81:148–152Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Kaspar Ruoff
    • 1
    • 3
  • María Teresa Iglesias
    • 2
  • Werner Luginbühl
    • 1
  • Jacques-Olivier Bosset
    • 1
  • Stefan Bogdanov
    • 1
  • Renato Amadò
    • 3
  1. 1.Swiss Bee Research Centre/Agroscope Liebefeld-PosieuxBerneSwitzerland
  2. 2.Instituto Madrileño de Investigación Agraria y Alimentaria (IMIA)Alcalá de HenaresMadridSpain
  3. 3.Swiss Federal Institute of Technology (ETH)Institute of Food Science and Nutrition, ETH-ZentrumZurichSwitzerland

Personalised recommendations